Skip to main content

Advertisement

Log in

Nutritional Considerations in Geriatric Orthopedics

  • Geriatric Psychiatry (C Quatman and C Quatman-Yates, Section Editors)
  • Published:
Current Geriatrics Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Malnourished patients are at risk for fragility fractures resulting in postoperative ​complications, increased mortality, and decreased functional status after geriatric orthopedic surgeries. Nutritional status of the older patient can be determined by various screening tools. We aim to review recent literature on nutritional status in preoperative and postoperative evaluations and determine its implications for geriatric orthopedic surgery patients.

Recent Findings

Malnutrition has been associated with increased orthopedic surgery complications. An individualized nutrition screening and treatment plan can reduce these complications and prevent future fragility fractures. Interleukin-6 is an inflammatory cytokine that may be useful in the prediction of mortality and nutritional status of the patient; however, further research is necessary.

Summary

A nutritional screening tool can be utilized to determine at-risk individuals. Nutrition should ​be optimized prior to undergoing an orthopedic procedure, and an interdisciplinary team approach is recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ortman JM, Velkoff VA, Hogan H. An aging nation: the older population in the United States. Washington, DC: United States Census Bureau, Economics and Statistics Administration, US Department of Commerce; 2014.

    Google Scholar 

  2. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. JBMR. 2007;3:465–75. https://doi.org/10.1359/jbmr.061113.

    Article  Google Scholar 

  3. Bentler SE, Liu L, Obrizan M, Cook EA, Wright KB, Geweke JF, et al. The aftermath of hip fracture: discharge placement, functional status change, and mortality. Am J Epidemiol. 2009;170(10):1290–9. https://doi.org/10.1093/aje/kwp266.

    Article  PubMed  PubMed Central  Google Scholar 

  4. • Lim PN, Ooi LJ, Ong T, Neighbour C, Sahota O. Pelvic fragility fractures in older people admitted to hospital: the clinical burden. Eur Geriatr Med. 2019;10(1):147–50. https://doi.org/10.1007/s41999-018-0131-6This article looks at the clinical course of pelvic fragility fractures. The authors found that pelvic fragility fractures are associated with worse inpatient and post-discharge clinical outcomes, without specific interventions. This is an older multi-morbid cohort needing significant post-fracture rehabilitation care. Their care in hospital needs to address their management complexities including the numerous medical problems, nutritional deficiencies and rehabilitation potential. This article helps highlight the different co-management teams, especially nutrition required to successfully care for these older adults.

    Article  PubMed  Google Scholar 

  5. Corkins MR, Guenter P, DiMaria-Ghalili RA, Jensen GL, Malone A, Miller S, et al. American Society for Parenteral and Enteral Nutrition. Malnutrition diagnoses in hospitalized patients: United States, 2010. J Parenter Enter Nutr. 2014;38(2):186–95. https://doi.org/10.1177/0148607113512154.

    Article  Google Scholar 

  6. Cereda E, Pedrolli C, Klersy C, Bonardi C, Quarleri L, Cappello S, et al. Nutritional status in older persons according to healthcare setting: a systematic review and meta-analysis of prevalence data using MNA®. Clin Nutr. 2016;35(6):1282–90. https://doi.org/10.1359/jbmr.061113.

    Article  PubMed  Google Scholar 

  7. Shahar S, Ibrahim Z, Abdul Fatah AR, Abdul Rahman S, Yusoff NAM, Arshad F, et al. A multidimensional assessment of nutritional and health status of rural elderly Malays. Asia Pac J Clin Nutr. 2007;16(2):346–53.

    PubMed  Google Scholar 

  8. Oliveira MR, Fogaça KC, Leandro-Merhi VA. Nutritional status and functional capacity of hospitalized elderly. Nutr J. 2009;8(1):54. https://doi.org/10.1186/1475-2891-8-54.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Olasunbo OI, Olubode KA. Socio-demographic and nutritional assessment of the elderly Yorubas in Nigeria. Asia Pac J Clin Nutr. 2006;15(1):95–101.

    Google Scholar 

  10. Agarwalla R, Saikia AM, Baruah R. Assessment of the nutritional status of the elderly and its correlates. J Fam Community Med. 2015;22(1):39–43. https://doi.org/10.4103/2230-8229.149588.

    Article  Google Scholar 

  11. Poulia KA, Klek S, Doundoulakis I, Bouras E, Karayiannis D, Baschali A, et al. The two most popular malnutrition screening tools in the light of the new ESPEN consensus definition of the diagnostic criteria for malnutrition. Clin Nutr. 2017;36(4):1130–5. https://doi.org/10.1016/j.clnu.2016.07.014.

    Article  PubMed  Google Scholar 

  12. Marshall S, Young A, Bauer J, Isenring E. Malnutrition in geriatric rehabilitation: prevalence, patient outcomes, and criterion validity of the scored patient-generated subjective global assessment and the mini nutritional assessment. J Acad Nutr Diet. 2016;116(5):785–94. https://doi.org/10.1016/j.jand.2015.06.013.

    Article  PubMed  Google Scholar 

  13. Rubenstein LZ, Harker JO, Salvà A, Guigoz Y, Vellas B. Screening for undernutrition in geriatric practice: developing the short-form Mini-Nutritional Assessment (MNA-SF). J Gerontol A Biol Sci Med Sci. 2001;56(6):M366–72. https://doi.org/10.1093/gerona/56.6.M366.

    Article  CAS  PubMed  Google Scholar 

  14. Fávaro-Moreira NC, Krausch-Hofmann S, Matthys C, Vereecken C, Vanhauwaert E, Declercq A, et al. Risk factors for malnutrition in older adults: a systematic review of the literature based on longitudinal data. Adv Nutr. 2016;7(3):507–22. https://doi.org/10.3945/an.115.011254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bharadwaj S, Ginoya S, Tandon P, Gohel TD, Guirguis J, Vallabh H, et al. Malnutrition: laboratory markers vs nutritional assessment. Gastroenterol Rep. 2016;4(4):272–80. https://doi.org/10.1093/gastro/gow013.

    Article  Google Scholar 

  16. Bohl DD, Shen MR, Hannon CP, Fillingham YA, Darrith B. Della valle CJ. Serum albumin predicts survival and postoperative course following surgery for geriatric hip fracture. J Bone J Surg Am. 2017;99(24):2110–8. https://doi.org/10.2106/JBJS.16.01620.

    Article  Google Scholar 

  17. Dellière S, Cynober L. Is transthyretin a good marker of nutritional status? Clin Nutr. 2017 Apr 1;36(2):364–70. https://doi.org/10.1016/j.clnu.2016.06.004.

    Article  CAS  PubMed  Google Scholar 

  18. Jawa RS, Anillo S, Huntoon K, Baumann H, Kulaylat M. Interleukin-6 in surgery, trauma, and critical care part II: clinical implications. J Intensive Care Med. 2011;26(2):73–87. https://doi.org/10.1177/0885066610384188.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Qiao Z, Wang W, Yin L, Luo P, Greven J, Horst K, et al. Using IL-6 concentrations in the first 24 h following trauma to predict immunological complications and mortality in trauma patients: a meta-analysis. Eur J Trauma Emerg S. 2018;44(5):679–87. https://doi.org/10.1007/s00068-017-0880-9.

    Article  Google Scholar 

  20. Bian AL, Hu HY, Rong YD, Wang J, Wang JX, Zhou XZ. A study on relationship between elderly sarcopenia and inflammatory factors IL-6 and TNF-α. Eur J Med Res. 2017;22(1):25. https://doi.org/10.1186/s12877-018-1007-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hennigar SR, McClung JP, Pasiakos SM. Nutritional interventions and the IL-6 response to exercise. FASEB J. 2017;31(9):3719–28. https://doi.org/10.1096/fj.201700080R.

    Article  CAS  PubMed  Google Scholar 

  22. Stojanović D, Bůžková P, Mukamal KJ, Heckbert SR, Psaty BM, Fink HA, et al. Soluble inflammatory markers and risk of incident fractures in older adults: the cardiovascular health study. J Bone Miner Res. 2018;33(2):221–8. https://doi.org/10.1002/jbmr.3301.

    Article  PubMed  Google Scholar 

  23. Saribal D, Hocaoglu-Emre FS, Erdogan S, Bahtiyar N, Okur SC, Mert M. Inflammatory cytokines IL-6 and TNF-α in patients with hip fracture. Osteoporos Int. 2019;30(5):1025–31. https://doi.org/10.1007/s00198-019-04874-2.

    Article  CAS  PubMed  Google Scholar 

  24. Kaiser K, Prystaz K, Vikman A, Haffner-Luntzer M, Bergdolt S, Strauss G, et al. Pharmacological inhibition of IL-6 trans-signaling improves compromised fracture healing after severe trauma. Naunyn-Schmiedeberg's Arch Pharm. 2018;391(5):523–36. https://doi.org/10.1007/s00210-018-1483-7.

    Article  CAS  Google Scholar 

  25. Prystaz K, Kovtun A, Kaiser K, Heidler V, Kroner J, Haffner-Luntzer M, et al. Role of interleukin-6 in the early and late fracture healing phase. 43rd Annual European Calcified Tissue Society Congress. BioScientifica. 2016;5:P54. https://doi.org/10.1530/boneabs.5P54.

    Article  Google Scholar 

  26. Koyama K, Ohba T, Ishii K, Jung G, Haro H, Matsuda K. Development of a quick serum IL-6 measuring system in rheumatoid arthritis. Cytokine. 2017;95:22–6. https://doi.org/10.1016/j.cyto.2017.02.002.

    Article  CAS  PubMed  Google Scholar 

  27. Garbers C, Heink S, Korn T, Rose-John S. Interleukin-6: designing specific therapeutics for a complex cytokine. Nat Rev Drug Discov. 2018;17(6):395–412. https://doi.org/10.1038/nrd.2018.45.

    Article  CAS  PubMed  Google Scholar 

  28. Kremers HM, Larson DR, Crowson CS, Kremers WK, Washington RE, Steiner CA, et al. Prevalence of Total hip and knee replacement in the United States. J Bone Joint Surg Am. 2015;97(17):1386–97. https://doi.org/10.2106/JBJS.N.01141.

    Article  PubMed  Google Scholar 

  29. Harjula JNE, Paloneva J, Haapakoski J, Kukkonen J, Äärimaa V. Increasing incidence of primary shoulder arthroplasty in Finland - a nationwide registry study. BMC Musculoskelet Disord. 2018;19(1):245. https://doi.org/10.1186/s12891-018-2150-3.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kumar C, Salzman B, Colburn JL. Preoperative assessment in older adults: a comprehensive approach. Am Fam Physician. 2018;98(4):214–20.

    PubMed  Google Scholar 

  31. Chon T, Ma A, Mun-price C. Perioperative fasting and the patient experience. Cureus. 2017;9(5):e1272. https://doi.org/10.7759/cureus.1272.

    Article  PubMed  PubMed Central  Google Scholar 

  32. •• Schroer WC, Lemarr AR, Mills K, Childress AL, Morton DJ, Reedy ME. Chitranjan S. Ranawat award: elective joint arthroplasty outcomes improve in malnourished patients with nutritional intervention: a prospective population analysis demonstrates a modifiable risk factor. Bone Joint J. 2019;101- B(7_Supple_C):17–21. https://doi.org/10.1302/0301-620X.101B7.BJJ-2018-1510.R1This is the first study to date that prospectively demonstrates a shorter length of hospital stay, a significantly lower primary hospitalization cost, and lower total 90-day charges in patients with preoperative hypoalbuminaemia who were encouraged to initiate a high protein, anti-inflammatory diet prior to elective total joint arthroplasty. This highlights malnutrition as a modifiable risk factor that impacts healthcare economics and improves postoperative outcomes.

    Article  PubMed  Google Scholar 

  33. •• Gu A, Malahias MA, Strigelli V, Nocon AA, Sculco TP, Sculco PK. Preoperative malnutrition negatively correlates with postoperative wound complications and infection after Total joint Arthroplasty: a systematic review and meta-analysis. J Arthroplast. 2019;34(5):1013–24. https://doi.org/10.1016/j.arth.2019.01.005Gu et. al performed a systematic review of twenty studies which correlated serologic markers (albumin, total lymphocyte count, and transferrin) to postoperative wound complications and infection after total joint arthroplasty. The authors demonstrate that an albumin < 3.5 g/dl was associated with an increase in wound complications (odds ratio of 2.18, 95% confidence interval 1.92-2.47). This article emphasizes the importance of patient nutritional optimization prior to elective total joint arthroplasty.

    Article  Google Scholar 

  34. Reber E, Strahm R, Bally L, Schuetz P, Stanga Z. Efficacy and Efficiency of Nutritional Support Teams. J Clin Med. 2019;8(9):E1281. https://doi.org/10.3390/jcm8091281.

    Article  PubMed  Google Scholar 

  35. Soffin EM, Yadeau JT. Enhanced recovery after surgery for primary hip and knee arthroplasty: A review of the evidence. Br J Anaesth. 2016;117(suppl 3):iii62–72. https://doi.org/10.1093/bja/aew362.

    Article  CAS  PubMed  Google Scholar 

  36. Qureshi R, Rasool M, Puvanesarajah V, Hassanzadeh H. Perioperative nutritional optimization in spine surgery. Clin Spine Surg. 2018;31(3):103–7. https://doi.org/10.1097/BSD.0000000000000579.

    Article  PubMed  Google Scholar 

  37. Ljungqvist O, Nygren J, Thorell A. Modulation of post-operative insulin resistance by pre-operative carbohydrate loading. Proc Nutr Soc. 2002;61(3):329–36.

    Article  CAS  Google Scholar 

  38. Amer MA, Smith MD, Herbison GP, Plank LD, Mccall JL. Network meta-analysis of the effect of preoperative carbohydrate loading on recovery after elective surgery. Br J Surg. 2017;104(3):187–97. https://doi.org/10.1002/bjs.10408.

    Article  CAS  PubMed  Google Scholar 

  39. Bharadwaj S, Trivax B, Tandon P, Alkam B, Hanouneh I, Steiger E. Should perioperative immunonutrition for elective surgery be the current standard of care? Gastroenterol Rep (Oxf). 2016;4(2):87–95. https://doi.org/10.1093/gastro/gow008.

    Article  Google Scholar 

  40. Probst P, Ohmann S, Klaiber U, Hüttner FJ, Billeter AT, Ulrich A, et al. Meta-analysis of immunonutrition in major abdominal surgery. Br J Surg. 2017;104(12):1594–608. https://doi.org/10.1002/bjs.10659.

    Article  CAS  PubMed  Google Scholar 

  41. Anthony CA, Duchman KR, Bedard NA, Gholson JJ, Gao Y, Pugely AJ, et al. Hip fractures: appropriate timing to operative intervention. J Arthroplast. 2017;32(11):3314–8. https://doi.org/10.1016/j.arth.2017.07.023.

    Article  Google Scholar 

  42. Fu MC, Boddapati V, Gausden EB, Samuel AM, Russell LA, Lane JM. Surgery for a fracture of the hip within 24 hours of admission is independently associated with reduced short-term post-operative complications. Bone Joint J. 2017;99(9):1216–22. https://doi.org/10.1302/0301-620X.99B9.BJJ-2017-0101.R1.

    Article  PubMed  Google Scholar 

  43. Practice Guidelines for Preoperative Fasting and the Use of Pharmacologic Agents to Reduce the Risk of Pulmonary Aspiration: Application to Healthy Patients Undergoing Elective Procedures: An Updated Report by the American Society of Anesthesiologists Task Force on Preoperative Fasting and the Use of Pharmacologic Agents to Reduce the Risk of Pulmonary Aspiration. Anesthesiology. 2017;126(3):376–393. https://doi.org/10.1097/ALN.0000000000001452

  44. Dixon J, Channell W, Arkley J, Eardley W. Nutrition in hip fracture units: contemporary practices in preoperative supplementation. Geriatr Orthop Surg Rehabil. 2019;10:2151459319870682. https://doi.org/10.1177/2151459319870682.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Noba L, Wakefield A. Are carbohydrate drinks more effective than preoperative fasting: a systematic review of randomised controlled trials. J Clin Nurs. 2019;28(17–18):3096–116. https://doi.org/10.1111/jocn.14919.

    Article  PubMed  Google Scholar 

  46. van Wissen J, van Stijn MF, Doodeman HJ, Houdijk AP. Mini nutritional assessment and mortality after hip fracture surgery in the elderly. J Nutr Health Aging. 2016;20(9):964–8. https://doi.org/10.1007/s12603-015-0630-9.

    Article  CAS  PubMed  Google Scholar 

  47. Dyer SM, Crotty M, Fairhall N, Magaziner J, Beaupre LA, Cameron ID, et al. A critical review of the long-term disability outcomes following hip fracture. BMC Geriatr. 2016;16(1):158. https://doi.org/10.1186/s12877-016-0332-0.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Beelen J, de Roos NM, De Groot LC. Protein enrichment of familiar foods as an innovative strategy to increase protein intake in institutionalized elderly. J Nutr Health Aging. 2017;21(2):173–9. https://doi.org/10.1007/s12603-016-0733-y.

    Article  CAS  PubMed  Google Scholar 

  49. Yuwen P, Chen W, Lv H, Feng C, Li Y, Zhang T, et al. Albumin and surgical site infection risk in orthopaedics: a meta-analysis. BMC Surg. 2017;17(1):7. https://doi.org/10.1186/s12893-016-0186-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Imaoka M, Higuchi Y, Todo E, Kitagwa T, Ueda T. Low-frequency exercise and vitamin D supplementation reduce falls among institutionalized frail elderly. Int J Gerontol. 2016;10(4):202–6. https://doi.org/10.1016/j.ijge.2016.02.005.

    Article  Google Scholar 

  51. Fischer V, Haffner-Luntzer M, Amling M, Ignatius A. Calcium and vitamin D in bone fracture healing and post-traumatic bone turnover. Eur Cell Mater. 2018;35:365–85. https://doi.org/10.22203/eCM.v035a25.

    Article  CAS  PubMed  Google Scholar 

  52. • He Y, Xiao J, Shi Z, He J, Li T. Supplementation of enteral nutritional powder decreases surgical site infection, prosthetic joint infection, and readmission after hip arthroplasty in geriatric femoral neck fracture with hypoalbuminemia. J Orthop Surg Res. 2019;14(1):292. https://doi.org/10.1186/s13018-019-1343-2This retrospective cohort study reports that nearly half of elderly patients are often malnourished, indicated by serum albumin, prior to hip arthroplasty. Patients with hypoalbuminemia who receive oral nutrition supplementation had reduced wound effusion, periprosthetic joint and surgical site infection, and 30-day readmission rates. The article emphasizes the importance of addressing hypoalbuminemia with enteral nutrition powder to reduce the risk of poor outcomes following hip arthroplasty in elderly patients.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Navarro DA, Boaz M, Krause I, Elis A, Chernov K, Giabra M, et al. Improved meal presentation increases food intake and decreases readmission rate in hospitalized patients. Clin Nutr. 2016;35(5):1153–8. https://doi.org/10.1016/j.clnu.2015.09.012.

    Article  PubMed  Google Scholar 

  54. Torbergsen AC, Watne LO, Frihagen F, Wyller TB, Mowè M. Effects of nutritional intervention upon bone turnover in elderly hip fracture patients. Randomized controlled trial. Clin Nutr ESPEN. 2019;29:52–8. https://doi.org/10.1016/j.clnesp.2017.11.012.

    Article  PubMed  Google Scholar 

  55. Lei M, Hua LM, Wang DW. The effect of probiotic treatment on elderly patients with distal radius fracture: a prospective double-blind, placebo-controlled randomised clinical trial. Benefic Microbes. 2016;7(5):631–7. https://doi.org/10.3920/BM2016.0067.

    Article  CAS  Google Scholar 

  56. Nordström P, Thorngren KG, Hommel A, Ziden L, Anttila S. Effects of geriatric team rehabilitation after hip fracture: meta-analysis of randomized controlled trials. J Am Med Dir Assoc. 2018;19(10):840–5. https://doi.org/10.1016/j.jamda.2018.05.008.

    Article  PubMed  Google Scholar 

  57. Dyer SM, Crotty M, Fairhall N, et al. A critical review of the long-term disability outcomes following hip fracture. BMC Geriatr. 2016;16(1):158. https://doi.org/10.1186/s12877-016-0332-0.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bogoch ER, Elliot-Gibson V, Beaton D, Sale J, Josse RG. Fracture prevention in the Orthopaedic environment: outcomes of a coordinator-based fracture liaison service. J Bone Joint Surg Am. 2017;99(10):820–31. https://doi.org/10.2106/JBJS.16.01042.

    Article  PubMed  Google Scholar 

  59. • Switzer JA, Schroder LK. Mobile outreach: an innovative program for older orthopedic patients in care facilities. Geriatr Orthop Surg Rehabil. 2019;10:2151459319826476. https://doi.org/10.1177/2151459319826476This study demonstrated the feasibility of an outreach program to provide appropriate and coordinated geriatric orthopedic care to patients living in long-term care facilities.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Siris ES, Adler R, Bilezikian J, Bolognese M, Dawson-Hughes B, Favus MJ, et al. The clinical diagnosis of osteoporosis: a position statement from the National Bone Health Alliance Working Group. Osteoporos Int. 2014;25(5):1439–43. https://doi.org/10.1007/s00198-014-2655-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Trevisan C, Crippa A, Ek S, et al. Nutritional Status, Body Mass Index, and the Risk of Falls in Community Dwelling Older Adults: A Systematic Review and Meta-Analysis. J Am Med Dir Assoc. 2019;20(5):569–582.e7. https://doi.org/10.1016/j.jamda.2018.10.027.

    Article  PubMed  Google Scholar 

  62. Karres J, Kieviet N, Eerenberg JP, Vrouenraets BC. Predicting early mortality after hip fracture surgery: the hip fracture estimator of mortality Amsterdam. J Orthop Trauma. 2018;32(1):27–33. https://doi.org/10.1097/BOT.0000000000001025.

    Article  PubMed  Google Scholar 

  63. Aldebeyan S, Nooh A, Aoude A, Weber MH, Harvey EJ. Hypoalbuminaemia-a marker of malnutrition and predictor of postoperative complications and mortality after hip fractures. Injury. 2017;48(2):436–40. https://doi.org/10.1016/j.injury.2016.12.016.

    Article  PubMed  Google Scholar 

  64. Farmer RP, Herbert B, Cuellar DO, Hao J, Stahel PF, Yasui R, et al. Osteoporosis and the orthopaedic surgeon: basic concepts for successful co-management of patients' bone health. Int Orthop. 2014;38(8):1731–8. https://doi.org/10.1007/s00264-014-2317-y.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Barsony J, Kleess L, Verbalis JG. Hyponatremia is linked to bone loss, osteoporosis, fragility and bone fractures. Disord Fluid Electrolyte Metabol. 2019;52:49–60. Karger Publishers. https://doi.org/10.1159/000493237.

    Article  CAS  Google Scholar 

  66. Chung M, Lee J, Terasawa T, Lau J, Trikalinos TA. Vitamin D with or without calcium supplementation for prevention of cancer and fractures: an updated meta-analysis for the U.S. preventive services task force. Ann Intern Med. 2011;155(12):827–38. https://doi.org/10.7326/0003-4819-155-12-201112200-00005.

    Article  PubMed  Google Scholar 

  67. Haentjens P, Autier P, Collins J, Velkeniers B, Vanderschueren D, Boonen S. Colles fracture, spine fracture, and subsequent risk of hip fracture in men and women: a meta-analysis. J Bone Joint Surg. 2003;85(10):1936–43. https://doi.org/10.2106/00004623-200310000-00011.

    Article  PubMed  Google Scholar 

  68. Conley RB, Adib G, Adler RA, Åkesson KE, Alexander IM, Amenta KC, et al. Secondary fracture prevention: consensus clinical recommendations from a multistakeholder coalition. J Bone Miner Res. 2019;35(1):36–52. https://doi.org/10.1002/jbmr.3877.

    Article  PubMed  Google Scholar 

  69. Hak DJ. The biology of fracture healing in osteoporosis and in the presence of anti-osteoporotic drugs. Injury. 2018;49(8):1461–5. https://doi.org/10.1016/j.injury.2018.04.016.

    Article  PubMed  Google Scholar 

  70. Kates SL, Ackert-Bicknell CL. How do bisphosphonates affect fracture healing? Injury. 2016;47(1):65–8. https://doi.org/10.1016/S0020-1383(16)30015-8.

    Article  Google Scholar 

  71. Aydoǧan NH, Ӧzel I, Iltar S, et al. The effect of vitamin D and bisphosphonate on fracture healing: an experimental study. JCOT. 2016;7(2):90–4. https://doi.org/10.1016/j.jcot.2016.01.003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa McCarthy.

Ethics declarations

Conflict of Interest

None.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Geriatric Orthopedics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youngman, T., Rinehart, D., Sorich, M. et al. Nutritional Considerations in Geriatric Orthopedics. Curr Geri Rep 11, 33–39 (2022). https://doi.org/10.1007/s13670-020-00343-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13670-020-00343-5

Keywords

Navigation