Skip to main content

Advertisement

Log in

Minimally Invasive Osteosynthes of Periprosthetic Fractures in the Lower Extremity

  • Geriatric Orthopedics (E Meinberg, Section Editor)
  • Published:
Current Geriatrics Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Periprosthetic fractures (PPF) of the lower extremity are increasing as the population ages, as the number of joint replacement increases, and patients remain active. The management of PPFs is challenging because of implant and cement obstruction within the bone, poor bone quality, and limited availability of bone stock for screw purchase. Historically, they have been associated with high rates of nonunion, infection, and fixation failure. Minimally invasive osteosynthesis (MIO) has reduced complications and improved union rates compared to conventional open plating of fractures. This paper reviews the principles of treatment, implant choices, and technical challenges of MIO for PPF in the lower extremity.

Recent Findings

In recent series, PPF for the lower extremity has shown reduced complication rates, improved union, and early mobilization compared prior open treatment.

Summary

MIO for PPF is technically challenging but promising method of treatment for PPF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major Importance

  1. Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am. 2007;89(4):780–5.

    PubMed  Google Scholar 

  2. Lewallen DG, Berry DJ. Periprosthetic fracture of the femur after total hip arthroplasty: treatment and results to date. Instr Course Lect. 1998;47:243.

    CAS  PubMed  Google Scholar 

  3. Berry DJ. Epidemiology: hip and knee. Orthop Clin. 1999;30(2):183–90.

    CAS  Google Scholar 

  4. Figgie MP, Goldberg VM, Figgie HE III, Sobel M. The results of treatment of supracondylar fracture above total knee arthroplasty. J Arthroplast. 1990;5(3):267–76.

    CAS  Google Scholar 

  5. Healy WL, Siliski JM, Incavo SJ. Operative treatment of distal femoral fractures proximal to total knee replacements. JBJS. 1993;75(1):27–34.

    CAS  Google Scholar 

  6. Ritter MA, Faris PM, Keating EM. Anterior femoral notching and ipsilateral supracondylar femur fracture in total knee arthroplasty. J Arthroplast. 1988;3(2):185–7.

    CAS  Google Scholar 

  7. Giannoudis PV, Kanakaris NK, Tsiridis E. Principles of internal fixation and selection of implants for periprosthetic femoral fractures. Injury. 2007;38(6):669–87.

    PubMed  Google Scholar 

  8. Duwelius PJ, Schmidt AH, Kyle RF, Talbott V, Ellis TJ, Butler JB. A prospective, modernized treatment protocol for periprosthetic femur fractures. Orthop Clin. 2004;35(4):485–92.

    Google Scholar 

  9. Brady OH, Kerry R, Masri BA, Garbuz DS, Duncan CP. The Vancouver classification of Periprosthetic fractures of the hip: a rational approach to treatment. Tech Orthop. 1999;14(2):107–14.

    Google Scholar 

  10. Brady OH, Garbuz DS, Masri BA, Duncan CP. The reliability of validity of the Vancouver classification of femoral fractures after hip replacement. J Arthroplast. 2000;15(1):59–62.

    CAS  Google Scholar 

  11. Pike J, Davidson D, Garbuz D, Duncan CP, OʼBrien PJ, Masri BA. Principles of treatment for periprosthetic femoral shaft fractures around well-fixed total hip arthroplasty. Am Acad Orthop Surg. 2009;17(11):677–88.

    Google Scholar 

  12. Rorabeck CH, Taylor JW. Classification of periprosthetic fractures complicating total knee arthroplasty. Orthop Clin. 1999;30(2):209–14.

    CAS  Google Scholar 

  13. Hanssen AD, Stuart MJ. Treatment of periprosthetic tibial fractures. Clin Orthop Relat Res. 2000;380:91–8.

    Google Scholar 

  14. Duncan C, Haddad F. The unified classification system (UCS): improving our understanding of periprosthetic fractures. Bone Joint J. 2014;96(6):713–6.

    PubMed  Google Scholar 

  15. Unified Classification System for Periprosthetic Fractures (UCPF). J Orthop Trauma. 2018;32:S141–4.

  16. Scott RD, et al. Femoral fractures in conjunction with total hip replacement. J Bone Joint Surg Am. 1975;57(4):494–501.

    CAS  PubMed  Google Scholar 

  17. Parrish TF, Jones JR. Fracture of the femur following prosthetic arthroplasty of the hip: report of nine cases. JBJS. 1964;46(2):241–8.

    CAS  Google Scholar 

  18. Taylor MM, Meyers MH, Harvey JJ. Intraoperative femur fractures during total hip replacement. Clin Orthop Relat Res. 1978;137:96–103.

    Google Scholar 

  19. Khan M, O'Driscoll M. Fractures of the femur during total hip replacement and their management. Bone Joint J. 1977;59(1):36–41.

    CAS  Google Scholar 

  20. Barfod G, Steen Jensen J, Hansen D, Larsen E, Menck H, Olsen B, et al. Hemi-arthroplasty of the hip followed by ipsilateral fracture of the femoral shaft. Injury. 1986;17(2):104–6.

    CAS  PubMed  Google Scholar 

  21. Abdu WA, Lurie JD, Spratt KF, Tosteson ANA, Zhao W, Tosteson TD, et al. Degenerative spondylolisthesis: does fusion method influence outcome? Four-year results of the spine patient outcomes research trial. Spine (Phila Pa 1976). 2009;34(21):2351–60.

    Google Scholar 

  22. Johansson J, et al. Fracture of the ipsilateral femur in patients wih total hip replacement. J Bone Joint Surg Am. 1981;63(9):1435–42.

    CAS  PubMed  Google Scholar 

  23. Cooke P, Newman J. Fractures of the femur in relation to cemented hip prostheses. J Bone Joint Surg Br. 1988;70(3):386–9.

    CAS  PubMed  Google Scholar 

  24. Beals RK, Tower SS. Periprosthetic fractures of the femur: an analysis of 93 fractures. Clin Orthop Relat Res. 1996;327:238–46.

    Google Scholar 

  25. Serocki JH, Chandler RW, Dorr LD. Treatment of fractures about hip prostheses with compression plating. J Arthroplast. 1992;7(2):129–35.

    CAS  Google Scholar 

  26. Wang J-W, Wang C-J. Periprosthetic fracture of the femur after hip arthroplasty: the clinical outcome using cortical strut allografts. J Orthop Surg. 2000;8(1):27–31.

    CAS  Google Scholar 

  27. Tsiridis E, Narvani AA, Timperley JA, Gie GA. Dynamic compression plates for Vancouver type B periprosthetic femoral fractures: a 3-year follow-up of 18 cases. Acta Orthop. 2005;76(4):531–7.

    PubMed  Google Scholar 

  28. Sen R, Prasad P, Kumar S, Nagi O. Periprosthetic femoral fractures around well fixed implants: a simple method of fixation using LC-DCP with trochanteric purchase. Acta Orthop Belg. 2007;73(2):200–6.

    PubMed  Google Scholar 

  29. Kuptniratsaikul S, et al. Plate-screw-wiring technique for the treatment of periprosthetic fracture around the hip: a biomechanical study. J Med Assoc Thai. 2001;84:S415–22.

    PubMed  Google Scholar 

  30. Wilson D, Frei H, Masri BA, Oxland TR, Duncan CP. A biomechanical study comparing cortical onlay allograft struts and plates in the treatment of periprosthetic femoral fractures. Clin Biomech. 2005;20(1):70–6.

    Google Scholar 

  31. Chandler H, Tigges R. The role of allografts in the treatment of periprosthetic femoral fractures. Instr Course Lect. 1998;47:257.

    CAS  PubMed  Google Scholar 

  32. Reudi T, Buckley R, Moran C. AO Principles of Fracture Management. New York: Thieme-Verlag.; 2007.

    Google Scholar 

  33. Perren SM, Mane K, Pohler O, Predieri M, Steinemann S, Gautier E. The limited contact dynamic compression plate (LC-DCP). Arch Orthop Trauma Surg. 1990;109(6):304–10.

    CAS  PubMed  Google Scholar 

  34. Perren SM. Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology. J Bone Joint Surg (Br). 2002;84(8):1093–110.

    Google Scholar 

  35. Farouk O, Krettek C, Miclau T, Schandelmaier P, Guy P, Tscherne H. Minimally invasive plate Osteosynthesis: does percutaneous plating disrupt femoral blood supply less than the traditional technique? J Orthop Trauma. 1999;13(6):401–6.

    CAS  PubMed  Google Scholar 

  36. Collinge CA, Sanders RW. Percutaneous plating in the lower extremity. J Am Acad Orthop Surg. 2000;8(4):211–6.

    CAS  PubMed  Google Scholar 

  37. Krettek C, et al. Minimally invasive percutaneous plate osteosynthesis (MIPPO) using the DCS in proximal and distal femoral fractures. Injury. 1997;28(Supplement 1):Sa20–30.

    Google Scholar 

  38. Bone LB. Indirect fracture reduction: a technique for minimizing surgical trauma. J Am Acad Orthop Surg. 1994;2(5):247–54.

    CAS  PubMed  Google Scholar 

  39. Mast J, Jakob R, Ganz R. Planning and reduction technique in fracture surgery, vol. xiii. Berlin: Springer-Verlag.; 1989. 254 p.

    Google Scholar 

  40. Schutz M, et al. Use of the less invasive stabilization system (LISS) in patients with distal femoral (AO33) fractures: a prospective multicenter study. Arch Orthop Trauma Surg. 2005;125(2):102–8.

    PubMed  Google Scholar 

  41. Oh CW, Kyung HS, Park IH, Kim PT, Ihn JC. Distal tibia metaphyseal fractures treated by percutaneous plate osteosynthesis. Clin Orthop Relat Res. 2003;408(408):286–91.

    Google Scholar 

  42. Stannard JP, et al. Fracture stabilization of proximal tibial fractures with the proximal tibial LISS: early experience in Birmingham, Alabama (USA). Injury. 2003;34(Suppl 1):A36–42.

    PubMed  Google Scholar 

  43. Gosling T, et al. Less invasive stabilization of complex tibial plateau fractures: a biomechanical evaluation of a unilateral locked screw plate and double plating. J Orthop Trauma. 2004;18(8):546–51.

    CAS  PubMed  Google Scholar 

  44. Kregor PJ, Stannard JA, Zlowodzki M, Cole PA. Treatment of distal femur fractures using the less invasive stabilization system - surgical experience and early clinical results in 103 fractures. J Orthop Trauma. 2004;18(8):509–20.

    PubMed  Google Scholar 

  45. Redfern DJ, Syed SU, Davies SJ. Fractures of the distal tibia: minimally invasive plate osteosynthesis. Injury. 2004;35(6):615–20.

    CAS  PubMed  Google Scholar 

  46. Collinge C, Protzman R. Outcomes of minimally invasive plate osteosynthesis for metaphyseal distal tibia fractures. J Orthop Trauma. 2010;24(1):24–9.

    PubMed  Google Scholar 

  47. Krettek C, Gerich T, Miclau T. A minimally invasive medial approach for proximal tibial fractures. Injury. 2001;32(Suppl 1):SA4–13.

    PubMed  Google Scholar 

  48. Fulkerson E, Koval K, Preston CF, Iesaka K, Kummer FJ, Egol KA. Fixation of periprosthetic femoral shaft fractures associated with cemented femoral stems: a biomechanical comparison of locked plating and conventional cable plates. J Orthop Trauma. 2006;20(2):89–93.

    PubMed  Google Scholar 

  49. Kregor P, et al. Distal femoral fracture fixation utilizing the less invasive stabilization system (LISS): the technique and early results. Injury. 2001;32:32–47.

    Google Scholar 

  50. • Ricci WM, et al. Indirect reduction and plate fixation, without grafting, for periprosthetic femoral shaft fractures about a stable intramedullary implant. Surgical Technique. J Bone Joint Surg Am. 2006;88 Suppl 1(Pt 2):275–82. Well illustrated and described technique for peri-implant and peri-prosthetic fixation of femur fractures.

    Google Scholar 

  51. Ricci WM, et al. Indirect reduction and plate fixation, without grafting, for periprosthetic femoral shaft fractures about a stable intramedullary implant. JBJS. 2005;87(10):2240–5.

    Google Scholar 

  52. Ehlinger M, Bonnomet F, Adam P. Periprosthetic femoral fractures: the minimally invasive fixation option. Orthop Traumatol Surg Res. 2010;96(3):304–9.

    CAS  PubMed  Google Scholar 

  53. Ehlinger M, Adam P, di Marco A, Arlettaz Y, Moor BK, Bonnomet F. Periprosthetic femoral fractures treated by locked plating: feasibility assessment of the mini-invasive surgical option. A prospective series of 36 fractures. Orthop Traumatol Surg Res. 2011;97(6):622–8.

    CAS  PubMed  Google Scholar 

  54. O'toole RV, et al. Low complication rate of LISS for femur fractures adjacent to stable hip or knee arthroplasty. Clin Orthop Relat Res. 2006;450:203–10.

    PubMed  Google Scholar 

  55. • El-Zayat B, et al. NCB-plating in the treatment of geriatric and periprosthetic femoral fractures. Orthop Traumatol Surg Res. 2012;98(7):765–72. Good technical description and clinical series using the periperosthetic-specific NCB-plate fixation system for lower extremity fractures.

    CAS  PubMed  Google Scholar 

  56. Ricci WM, Loftus T, Cox C, Borrelli J. Locked plates combined with minimally invasive insertion technique for the treatment of periprosthetic supracondylar femur fractures above a total knee arthroplasty. J Orthop Trauma. 2006;20(3):190–6.

    PubMed  Google Scholar 

  57. Kregor P, Hughes J, Cole P. Fixation of distal femoral fractures above total knee arthroplasty utilizing the less invasive stabilization system (LISS). Injury. 2001;32:64–75.

    Google Scholar 

  58. Su ET, DeWal H, Di Cesare PE. Periprosthetic femoral fractures above total knee replacements. Am Acad Orthop Surg. 2004;12(1):12–20.

    Google Scholar 

  59. Maniar R, et al. Supracondylar femoral fracture above a PFC posterior cruciate-substituting total knee arthroplasty treated with supracondylar nailing: a unique technical problem. J Arthroplast. 1996;11(5):637–9.

    CAS  Google Scholar 

  60. McLaren AC, Dupont JA, Schroeber DC. Open reduction internal fixation of supracondylar fractures above total knee arthroplasties using the intramedullary supracondylar rod. Clin Orthop Relat Res. 1994;302:194–8.

    Google Scholar 

  61. Ricci WM, O'Boyle M, Borrelli J, Bellabarba C, Sanders R. Fractures of the proximal third of the tibial shaft treated with intramedullary nails and blocking screws. J Orthop Trauma. 2001;15(4):264–70.

    CAS  PubMed  Google Scholar 

  62. Bong MR, Egol KA, Koval KJ, Kummer FJ, Su ET, Iesaka K, et al. Comparison of the LISS and a retrograde-inserted supracondylar intramedullary nail for fixation of a periprosthetic distal femur fracture proximal to a total knee arthroplasty. J Arthroplast. 2002;17(7):876–81.

    Google Scholar 

  63. Althausen PL, Lee MA, Finkemeier CG, Meehan JP, Rodrigo JJ. Operative stabilization of supracondylar femur fractures above total knee arthroplasty: a comparison of four treatment methods. J Arthroplast. 2003;18(7):834–9.

    Google Scholar 

  64. Gliatis J, Megas P, Panagiotopoulos E, Lambiris E. Midterm results of treatment with a retrograde nail for supracondylar Periprosthetic fractures of the femur following Total knee arthroplasty. J Orthop Trauma. 2005;19(3):164–70.

    PubMed  Google Scholar 

  65. Boldin C, Fankhauser F, Hofer HP, Szyszkowitz R. Three-year results of proximal tibia fractures treated with the LISS. Clin Orthop Relat Res. 2006;445:222–9.

    PubMed  Google Scholar 

  66. Mast J, Jakob R, Ganz R. Planning and reduction technique in fracture surgery. Berlin: Springer-Verlag Berlin Heidelberg; 1989.

    Google Scholar 

  67. Mathes S, Nahai F. The reconstructive triangle: a paradigm for surgical descision making. In: Mathes SJ, Nahai F, editors. Reconstructive surgery: principles, anatomy, & technique. 1st ed. New York: Churchill Livingstone; 1997. p. 9–39.

    Google Scholar 

  68. • Kubiak EN, Widmer BJ, Horwitz DS. Extra-articular technique for semiextended tibial nailing. J Orthop Trauma. 2010;24(11):704–8. Practical discussion of the technique for nailing tibia fractures distal to a total knee arthroplast.

    PubMed  Google Scholar 

  69. Haller JM, Kubiak EN, Spiguel A, Gardner MJ, Horwitz DS. Intramedullary nailing of tibial shaft fractures distal to total knee arthroplasty. J Orthop Trauma. 2014;28(12):e296–300.

    PubMed  Google Scholar 

  70. Soenen M, Baracchi M, de Corte R, Labey L, Innocenti B. Stemmed TKA in a femur with a total hip arthroplasty: is there a safe distance between the stem tips? J Arthroplast. 2013;28(8):1437–45.

    Google Scholar 

  71. Larson J, Chao E, Fitzgerald R. Bypassing femoral cortical defects with cemented intramedullary stems. J Orthop Res. 1991;9(3):414–21.

    CAS  PubMed  Google Scholar 

  72. Kregor PJ, Hughes JL, Cole PA. Fixation of distal femoral fractures above total knee arthroplasty utilizing the Less Invasive Stabilization System (L.I.S.S.). Injury. 2001;32:64–75.

    Google Scholar 

  73. Berlusconi M, et al. Locking compression plates (LCP) for treatment of periprosthetic fractures of the hip. J Orthop Trauma. 2004;18(Suppl. 9):S20–1.

    Google Scholar 

  74. Harvin WH, Oladeji LO, Della Rocca GJ, Murtha YM, Volgas DA, Stannard JP, et al. Working length and proximal screw constructs in plate osteosynthesis of distal femur fractures. Injury. 2017;48(11):2597–601.

    PubMed  Google Scholar 

  75. McLachlin S, Kreder H, Ng M, Jenkinson R, Whyne C, Larouche J. Proximal screw configuration alters peak plate strain without changing construct stiffness in comminuted supracondylar femur fractures. J Orthop Trauma. 2017;31(12):e418–24.

    PubMed  Google Scholar 

  76. Elkins J, Marsh JL, Lujan T, Peindl R, Kellam J, Anderson DD, et al. Motion predicts clinical callus formation: construct-specific finite element analysis of supracondylar femoral fractures. J Bone Joint Surg Am. 2016;98(4):276–84.

    PubMed  PubMed Central  Google Scholar 

  77. • Cui, S., et al., Locked plating of comminuted distal femur fractures: does unlocked screw placement affect stability and failure? J Orthop Trauma, 2014. 28(2): p. 90–6. While this article does not specifically discuss periprosthetic fractures, the techniques and pitfalls it describes for minimally invasive fixation of distal femoral fractures are very applicable.

  78. Beltran MJ, Gary JL, Collinge CA. Management of distal femur fractures with modern plates and nails: state of the art. J Orthop Trauma. 2015;29(4):165–72.

    PubMed  Google Scholar 

  79. Bottlang M, Doornink J, Byrd GD, Fitzpatrick DC, Madey SM. A nonlocking end screw can decrease fracture risk caused by locked plating in the osteoporotic diaphysis. J Bone Joint Surg Am. 2009;91(3):620–7.

    PubMed  Google Scholar 

  80. Bottlang M, Feist F. Biomechanics of far cortical locking. J Orthop Trauma. 2011;25(Suppl 1):S21–8.

    PubMed  PubMed Central  Google Scholar 

  81. Bottlang, M., et al., Effects of construct stiffness on healing of fractures stabilized with locking plates. J Bone Joint Surg Am, 2010. 92 Suppl 2(Supplement_2): p. 12–22.

    PubMed  PubMed Central  Google Scholar 

  82. Bottlang M, Tsai S, Bliven EK, von Rechenberg B, Klein K, Augat P, et al. Dynamic stabilization with active locking plates delivers faster, stronger, and more symmetric fracture-healing. J Bone Joint Surg Am. 2016;98(6):466–74.

    PubMed  PubMed Central  Google Scholar 

  83. Anakwe RE, Aitken SA, Khan LA. Osteoporotic periprosthetic fractures of the femur in elderly patients: outcome after fixation with the LISS plate. Injury. 2008;39(10):1191–7.

    CAS  PubMed  Google Scholar 

  84. Myers P, Laboe P, Johnson KJ, Fredericks PD, Crichlow RJ, Maar DC, et al. Patient mortality in geriatric distal femur fractures. J Orthop Trauma. 2018;32(3):111–5.

    PubMed  Google Scholar 

  85. Gitajn IL, Heng M, Weaver MJ, Casemyr N, May C, Vrahas MS, et al. Mortality following surgical Management of Vancouver B Periprosthetic Fractures. J Orthop Trauma. 2017;31(1):9–14.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol A. Lin.

Ethics declarations

Conflict of Interest

Carol Lin and Milton Little declare no conflict of interest. Charles Moon reports personal fees from Stryker as a trauma consultant, outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Geriatric Orthopedics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, C.A., Little, M.T.M. & Moon, C.N. Minimally Invasive Osteosynthes of Periprosthetic Fractures in the Lower Extremity. Curr Geri Rep 7, 256–263 (2018). https://doi.org/10.1007/s13670-018-0259-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13670-018-0259-8

Keywords

Navigation