Skip to main content

Advertisement

Log in

Recent Advances in Cholinergic Imaging and Cognitive Decline—Revisiting the Cholinergic Hypothesis of Dementia

  • Neurology of Aging (K. Marder, Section Editor)
  • Published:
Current Geriatrics Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Although the cholinergic hypothesis of dementia provided a successful paradigm for the development of new drugs for dementia, this hypothesis has waned in popularity. Cholinergic brain imaging may provide novel insights into the viability of this hypothesis.

Recent Findings

Cholinergic receptor and forebrain volumetric studies suggest an important role of the cholinergic system in maintaining brain network integrity that may deteriorate with cognitive decline in Alzheimer disease (AD) and Lewy body disorders (LBD). Bidirectional changes in regional receptor expression may suggest the presence of compensatory responses to neurodegenerative injury. Cholinergic system changes are more complex in LBD because of additional subcortical degenerations compared to AD. Cholinergic-dopaminergic interactions affect attentional, verbal learning, and executive functions, and impairments in these two transmitter systems may jointly increase the risk of dementia in Parkinson’s disease.

Summary

The cholinergic hypothesis is evolving from a primary focus on memory toward expanded cognitive functions modulated by regionally more complex and interactive brain networks. Cholinergic network adaptation may serve as a novel research target in neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AChE:

Acetylcholinesterase

AD:

Alzheimer disease

CBFB:

cholinergic basal forebrain

DLB:

dementia with Lewy bodies

DMN:

default mode network

MCI:

mild cognitive impairment

MRI:

magnetic resonance imaging

NBM:

nucleus basalis of Meynert

PD:

Parkinson’s disease

PDD:

Parkinson’s disease with dementia

PPN:

pedunculopontine nucleus

PET:

Positron emission tomography

SPECT:

Single-photon computed emission tomography

VAChT:

Vesicular acetylcholine transporter

References

Papers of Particular Interest, Published Recently, Have Been Highlighted as: • Of Importance •• Of Major Importance

  1. Drachman DA, Leavitt J. Human memory and the cholinergic system. A relationship to aging? Arch Neurol. 1974;30(2):113–21. https://doi.org/10.1001/archneur.1974.00490320001001.

    Article  CAS  PubMed  Google Scholar 

  2. Bartus RT, Dean RL 3rd, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. Science. 1982;217(4558):408–14. https://doi.org/10.1126/science.7046051.

    Article  CAS  PubMed  Google Scholar 

  3. Davies P, Maloney A. Selective loss of central cholinergic neurons in Alzheimer's disease. Lancet. 1976;II:1403.

    Article  Google Scholar 

  4. Perry EK, Perry RH, Blessed G, Tomlinson BE. Necropsy evidence of central cholinergic deficits in senile dementia. Lancet. 1977;309(I):189. https://doi.org/10.1016/S0140-6736(77)91780-9.

    Article  Google Scholar 

  5. Whitehouse PJ, Hedreen JC, White CL, Price DL. Basal forebrain neurons in the dementia of Parkinson disease. Ann Neurol. 1983;13(3):243–8. https://doi.org/10.1002/ana.410130304.

    Article  CAS  PubMed  Google Scholar 

  6. Arendt T, Bigl V, Arendt A, Tennstedt A. Loss of neurons in the nucleus basalis of Meynert in Alzheimer's disease, paralysis agitans and Korsakoff's disease. Acta Neuropathol (Berl). 1983;61(2):101–8. https://doi.org/10.1007/BF00697388.

    Article  CAS  Google Scholar 

  7. Hasselmo ME, Sarter M. Modes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacology. 2011;36(1):52–73. https://doi.org/10.1038/npp.2010.104.

    Article  CAS  PubMed  Google Scholar 

  8. Zemek F, Drtinova L, Nepovimova E, Sepsova V, Korabecny J, Klimes J, et al. Outcomes of Alzheimer's disease therapy with acetylcholinesterase inhibitors and memantine. Expert Opin Drug Saf. 2014;13(6):759–74. https://doi.org/10.1517/14740338.2014.914168.

    CAS  PubMed  Google Scholar 

  9. Kalia LV. Biomarkers for cognitive dysfunction in Parkinson's disease. Parkinsonism Relat Disord. 2017;46:S19–23. https://doi.org/10.1016/j.parkreldis.2017.07.023.

    Article  PubMed  Google Scholar 

  10. Kalaitzakis ME, Pearce RK. The morbid anatomy of dementia in Parkinson's disease. Acta Neuropathol. 2009;118(5):587–98. https://doi.org/10.1007/s00401-009-0597-x.

    Article  CAS  PubMed  Google Scholar 

  11. Mesulam MM. The systems-level organization of cholinergic innervation in the human cerebral cortex and its alterations in Alzheimer's disease. Prog Brain Res. 1996;109:285–97. https://doi.org/10.1016/S0079-6123(08)62112-3.

    Article  CAS  PubMed  Google Scholar 

  12. Mesulam M, Mufson E, Levy A, Wainer B. Cholinergic innervation of cortex by the basal forebrain: Cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol. 1983;214(2):170–97. https://doi.org/10.1002/cne.902140206.

    Article  CAS  PubMed  Google Scholar 

  13. Mesulam MM, Mufson EJ, Wainer BH, Levy AI. Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (CH1-CH-6). Neurosci. 1983;10(4):1185–201. https://doi.org/10.1016/0306-4522(83)90108-2.

    Article  CAS  Google Scholar 

  14. Heckers S, Geula C, Mesulam M. Cholinergic innervation of the human thalamus: dual origin and differential nuclear distribution. J Comp Neurol. 1992;325(1):68–82. https://doi.org/10.1002/cne.903250107.

    Article  CAS  PubMed  Google Scholar 

  15. Fibiger H. The organization and some projections of cholinergic neurons of the mammalian forebrain. Brain Res Rev. 1982;4(3):327–88. https://doi.org/10.1016/0165-0173(82)90011-X.

    Article  Google Scholar 

  16. Mesulam M, Mash D, Hersh L, Bothwell M, Geula C. Cholinergic innervation of the human striatum, globus pallidus, subthalamic nucleus, substantia nigra, and red nucleus. J Comp Neurol. 1992;323(2):252–68. https://doi.org/10.1002/cne.903230209.

    Article  CAS  PubMed  Google Scholar 

  17. Shute CC, Lewis PR. Electron microscopy of cholinergic terminals and acetylcholinesterase-containing neurones in the hippocampal formation of the rat. Z Zellforsch Mikrosk Anat. 1966;69(1):334–43. https://doi.org/10.1007/BF00406286.

    Article  CAS  PubMed  Google Scholar 

  18. Herholz K, Weisenbach S, Zündorf G, Lenz O, Schröder H, Bauer B, et al. In vivo study of acetylcholine esterase in basal forebrain, amygdala, and cortex in mild to moderate Alzheimer disease. NeuroImage. 2004;21(1):136–43. https://doi.org/10.1016/j.neuroimage.2003.09.042.

    Article  CAS  PubMed  Google Scholar 

  19. Kuhl D, Minoshima S, Fessler J, Frey K, Foster N, Ficaro E, et al. In vivo mapping of cholinergic terminals in normal aging, Alzheimer's disease, and Parkinson's disease. Ann Neurol. 1996;40(3):399–410. https://doi.org/10.1002/ana.410400309.

    Article  CAS  PubMed  Google Scholar 

  20. Kuhl DE, Koeppe RA, Minoshima S, Snyder SE, Ficaro EP, Foster NL, et al. In vivo mapping of cerebral acetylcholinesterase activity in aging and Alzheimer's disease. Neurology. 1999;52(4):691–9. https://doi.org/10.1212/WNL.52.4.691.

    Article  CAS  PubMed  Google Scholar 

  21. Kotagal V, Muller ML, Kaufer DI, Koeppe RA, Bohnen NI. Thalamic cholinergic innervation is spared in Alzheimer disease compared to parkinsonian disorders. Neurosci Lett. 2012;514(2):169–72. https://doi.org/10.1016/j.neulet.2012.02.083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. • Richter N, Allendorf I, Onur OA, Kracht L, Dietlein M, Tittgemeyer M, et al. The integrity of the cholinergic system determines memory performance in healthy elderly. NeuroImage. 2014;100:481–8. https://doi.org/10.1016/j.neuroimage.2014.06.031. A MP4A-PET study highlighting the role of cholinergic system integrity for cognitive performance in the normal aging process

    Article  CAS  PubMed  Google Scholar 

  23. Haense C, Kalbe E, Herholz K, Hohmann C, Neumaier B, Krais R, et al. Cholinergic system function and cognition in mild cognitive impairment. Neurobiol Aging. 2012;33(5):867–77. https://doi.org/10.1016/j.neurobiolaging.2010.08.015.

    Article  CAS  PubMed  Google Scholar 

  24. Bohnen NI, Kaufer DI, Hendrickson R, Ivanco LS, Lopresti B, Davis JG, et al. Cognitive correlates of alterations in acetylcholinesterase in Alzheimer's disease. Neurosci Lett. 2005;380(1–2):127–32. https://doi.org/10.1016/j.neulet.2005.01.031.

    Article  CAS  PubMed  Google Scholar 

  25. Aghourian M, Legault-Denis C, Soucy JP, Rosa-Neto P, Gauthier S, Kostikov A, et al. Quantification of brain cholinergic denervation in Alzheimer's disease using PET imaging with [18F]-FEOBV. Mol Psychiatry. 2017;22(11):1531–8. https://doi.org/10.1038/mp.2017.183.

    Article  CAS  PubMed  Google Scholar 

  26. Liu AK, Chang RC, Pearce RK, Gentleman SM. Nucleus basalis of Meynert revisited: anatomy, history and differential involvement in Alzheimer's and Parkinson's disease. Acta Neuropathol. 2015;129(4):527–40. https://doi.org/10.1007/s00401-015-1392-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging. 2003;24(2):197–211. https://doi.org/10.1016/S0197-4580(02)00065-9.

    Article  PubMed  Google Scholar 

  28. Bohnen NI, Kaufer DI, Ivanco LS, Lopresti B, Koeppe RA, Davis JG, et al. Cortical cholinergic function is more severely affected in parkinsonian dementia than in Alzheimer disease: an in vivo positron emission tomographic study. Arch Neurol. 2003;60(12):1745–8. https://doi.org/10.1001/archneur.60.12.1745.

    Article  PubMed  Google Scholar 

  29. Weintraub D, Somogyi M, Meng X. Rivastigmine in Alzheimer's disease and Parkinson's disease dementia: an ADAS-cog factor analysis. Am J Alzheimers Dis Other Demen. 2011;26(6):443–9. https://doi.org/10.1177/1533317511424892.

    Article  PubMed  Google Scholar 

  30. Hall H, Reyes S, Landeck N, Bye C, Leanza G, Double K, et al. Hippocampal Lewy pathology and cholinergic dysfunction are associated with dementia in Parkinson's disease. Brain. 2014;137(Pt 9):2493–508. https://doi.org/10.1093/brain/awu193.

    Article  PubMed  Google Scholar 

  31. • Mazere J, Lamare F, Allard M, Fernandez P, Mayo W. 123I-Iodobenzovesamicol SPECT imaging of cholinergic Systems in Dementia with Lewy bodies. J Nucl Med. 2017;58(1):123–8. https://doi.org/10.2967/jnumed.116.176180. Study demonstrating subcortical (striatal, thalamic, cerebellar) cholinergic transporters in DLB

    Article  CAS  PubMed  Google Scholar 

  32. Bohnen NI, Muller MLTM, Kotagal V, Koeppe RA, Kilbourn MR, Gilman S, et al. Heterogeneity of cholinergic denervation in Parkinson's disease without dementia. J Cereb Blood Flow Metab. 2012;32(8):1609–17. https://doi.org/10.1038/jcbfm.2012.60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. • Bohnen NI, Albin RL, Muller ML, Petrou M, Kotagal V, Koeppe RA, et al. Frequency of cholinergic and caudate nucleus dopaminergic deficits across the predemented cognitive spectrum of Parkinson disease and evidence of interaction effects. JAMA Neurol. 2015;72(2):194–200. https://doi.org/10.1001/jamaneurol.2014.2757. A multitracer PET study showing both independent and interactive effects of cholinergic and dopaminergic degeneration on cognitive decline in Parkinson disease

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sarter M, Albin RL, Kucinski A, Lustig C. Where attention falls: increased risk of falls from the converging impact of cortical cholinergic and midbrain dopamine loss on striatal function. Exp Neurol. 2014;257C:120–9. https://doi.org/10.1016/j.expneurol.2014.04.032.

    Article  Google Scholar 

  35. Ewers M, Walsh C, Trojanowski JQ, Shaw LM, Petersen RC, Jack CR Jr, et al. Prediction of conversion from mild cognitive impairment to Alzheimer's disease dementia based upon biomarkers and neuropsychological test performance. Neurobiol Aging. 2012;33(7):1203–14. https://doi.org/10.1016/j.neurobiolaging.2010.10.019.

    Article  CAS  PubMed  Google Scholar 

  36. Kucinski A, Paolone G, Bradshaw M, Albin RL, Sarter M. Modeling fall propensity in Parkinson's disease: deficits in the attentional control of complex movements in rats with cortical-cholinergic and striatal-dopaminergic deafferentation. J Neurosci. 2013;33(42):16522–39. https://doi.org/10.1523/JNEUROSCI.2545-13.2013.

    Article  CAS  PubMed  Google Scholar 

  37. Shah N, Frey KA, Muller MLTM, Petrou M, Kotagal V, Koeppe RA, et al. Striatal and cortical beta-Amyloidopathy and cognition in Parkinson's disease. Mov Disord. 2016;31(1):111–7. https://doi.org/10.1002/mds.26369.

    Article  CAS  PubMed  Google Scholar 

  38. • Kim K, Muller M, Bohnen NI, Sarter M, Lustig C. Thalamic cholinergic innervation makes a specific bottom-up contribution to signal detection: evidence from Parkinson's disease patients with defined cholinergic losses. NeuroImage. 2017;149:295–304. https://doi.org/10.1016/j.neuroimage.2017.02.006. Multitracer PET study demonstrating a unique role of thalamic cholinergic innervation (as opposed to cortical cholinergic or midbrain dopaminergic innervation) for bottom-up salience processing in the human brain

    Article  CAS  PubMed  Google Scholar 

  39. Buschman TJ, Miller EK. Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science. 2007;315(5820):1860–2. https://doi.org/10.1126/science.1138071.

    Article  CAS  PubMed  Google Scholar 

  40. •• Gratwicke J, Jahanshahi M, Foltynie T. Parkinson's disease dementia: a neural networks perspective. Brain. 2015;138(Pt 6):1454–76. https://doi.org/10.1093/brain/awv104. A comprehensive review and perspective article outlining possible links between neurotransmitter deficits, large-scale neural network dysfunction, and cognitive impairments in PD

    Article  PubMed  PubMed Central  Google Scholar 

  41. Meyer PM, Strecker K, Kendziorra K, Becker G, Hesse S, Woelpl D, et al. Reduced alpha4beta2*-nicotinic acetylcholine receptor binding and its relationship to mild cognitive and depressive symptoms in Parkinson disease. Arch Gen Psychiatry. 2009;66(8):866–77. https://doi.org/10.1001/archgenpsychiatry.2009.106.

    Article  CAS  PubMed  Google Scholar 

  42. Kendziorra K, Wolf H, Meyer PM, Barthel H, Hesse S, Becker GA, et al. Decreased cerebral alpha4beta2* nicotinic acetylcholine receptor availability in patients with mild cognitive impairment and Alzheimer's disease assessed with positron emission tomography. Eur J Nucl Med Mol Imaging. 2011;38(3):515–25. https://doi.org/10.1007/s00259-010-1644-5.

    Article  CAS  PubMed  Google Scholar 

  43. Dennis EL, Thompson PM. Functional brain connectivity using fMRI in aging and Alzheimer's disease. Neuropsychol Rev. 2014;24(1):49–62. https://doi.org/10.1007/s11065-014-9249-6.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A. 2001;98(2):676–82. https://doi.org/10.1073/pnas.98.2.676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 2007;8(9):700–11. https://doi.org/10.1038/nrn2201.

    Article  CAS  PubMed  Google Scholar 

  46. • Colloby SJ, McKeith IG, Wyper DJ, O'Brien JT, Taylor JP. Regional covariance of muscarinic acetylcholine receptors in Alzheimer's disease using (R, R) [(123)I]-QNB SPECT. J Neurol. 2015;262(9):2144–53. https://doi.org/10.1007/s00415-015-7827-z. Study showing regional muscarinic cholinergic receptor changes overlapping with important brain networks subserving cognition in AD

    Article  CAS  PubMed  Google Scholar 

  47. Overk CR, Felder CC, Tu Y, Schober DA, Bales KR, Wuu J, et al. Cortical M1 receptor concentration increases without a concomitant change in function in Alzheimer's disease. J Chem Neuroanat. 2010;40(1):63–70. https://doi.org/10.1016/j.jchemneu.2010.03.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. • Colloby SJ, Field RH, Wyper DJ, O'Brien JT, Taylor JP. A spatial covariance 123I-5IA-85380 SPECT study of alpha4beta2 nicotinic receptors in Alzheimer's disease. Neurobiol Aging. 2016;47:83–90. https://doi.org/10.1016/j.neurobiolaging.2016.07.017. Study showing regional nicotinic cholinergic receptor changes overlapping with important brain networks subserving cognition in AD

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Iizuka T, Kameyama M. Cholinergic enhancement increases regional cerebral blood flow to the posterior cingulate cortex in mild Alzheimer's disease. Geriatr Gerontol Int. 2017;17(6):951–8. https://doi.org/10.1111/ggi.12818.

    Article  PubMed  Google Scholar 

  50. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27(9):2349–56. https://doi.org/10.1523/JNEUROSCI.5587-06.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. • Colloby SJ, McKeith IG, Burn DJ, Wyper DJ, O'Brien JT, Taylor JP. Cholinergic and perfusion brain networks in Parkinson disease dementia. Neurology. 2016;87(2):178–85. https://doi.org/10.1212/WNL.0000000000002839. Study showing regional muscarinic cholinergic receptor changes overlapping with important brain networks subserving cognition in PD

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. • Isaias IU, Spiegel J, Brumberg J, Cosgrove KP, Marotta G, Oishi N, et al. Nicotinic acetylcholine receptor density in cognitively intact subjects at an early stage of Parkinson's disease. Front Aging Neurosci. 2014;6:213. https://doi.org/10.3389/fnagi.2014.00213. Study showing regional upregulation of nicotinic receptors in PD

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hanyu H, Asano T, Sakurai H, Tanaka Y, Takasaki M, Abe K. MR analysis of the substantia innominata in normal aging, Alzheimer disease, and other types of dementia. AJNR Am J Neuroradiol. 2002;23(1):27–32.

    PubMed  Google Scholar 

  54. Choi SH, Jung TM, Lee JE, Lee SK, Sohn YH, Lee PH. Volumetric analysis of the substantia innominata in patients with Parkinson's disease according to cognitive status. Neurobiol Aging. 2012;33(7):1265–72. https://doi.org/10.1016/j.neurobiolaging.2010.11.015.

    Article  PubMed  Google Scholar 

  55. Ziegler DA, Wonderlick JS, Ashourian P, Hansen LA, Young JC, Murphy AJ, et al. Substantia nigra volume loss before basal forebrain degeneration in early Parkinson disease. JAMA Neurol. 2013;70(2):241–7. https://doi.org/10.1001/jamaneurol.2013.597.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Teipel SJ, Flatz WH, Heinsen H, Bokde AL, Schoenberg SO, Stockel S, et al. Measurement of basal forebrain atrophy in Alzheimer's disease using MRI. Brain. 2005;128(Pt 11):2626–44. https://doi.org/10.1093/brain/awh589.

    Article  PubMed  Google Scholar 

  57. Grothe M, Heinsen H, Teipel SJ. Atrophy of the cholinergic basal forebrain over the adult age range and in early stages of Alzheimer's disease. Biol Psychiatry. 2012;71(9):805–13. https://doi.org/10.1016/j.biopsych.2011.06.019.

    Article  CAS  PubMed  Google Scholar 

  58. Teipel SJ, Meindl T, Grinberg L, Grothe M, Cantero JL, Reiser MF, et al. The cholinergic system in mild cognitive impairment and Alzheimer's disease: an in vivo MRI and DTI study. Hum Brain Mapp. 2011;32(9):1349–62. https://doi.org/10.1002/hbm.21111.

    Article  PubMed  Google Scholar 

  59. Grothe M, Zaborszky L, Atienza M, Gil-Neciga E, Rodriguez-Romero R, Teipel SJ, et al. Reduction of basal forebrain cholinergic system parallels cognitive impairment in patients at high risk of developing Alzheimer's disease. Cereb Cortex. 2010;20(7):1685–95. https://doi.org/10.1093/cercor/bhp232.

    Article  PubMed  Google Scholar 

  60. •• Grothe MJ, Ewers M, Krause B, Heinsen H, Teipel SJ. Basal forebrain atrophy and cortical amyloid deposition in nondemented elderly subjects. Alzheimers Dement. 2014;10(5):S344–53. https://doi.org/10.1016/j.jalz.2013.09.011. A combined MRI volumetry and amyloid-PET study demonstrating an in vivo association between cholinergic forebrain atrophy and cortical amyloid pathology in preclinical and predementia stages of AD that reproduces analogue findings from the neuropathologic literature.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Whitwell JL, Weigand SD, Shiung MM, Boeve BF, Ferman TJ, Smith GE, et al. Focal atrophy in dementia with Lewy bodies on MRI: a distinct pattern from Alzheimer's disease. Brain. 2007;130(Pt 3):708–19. https://doi.org/10.1093/brain/awl388.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Teipel S, Heinsen H, Amaro E Jr, Grinberg LT, Krause B, Grothe M. Cholinergic basal forebrain atrophy predicts amyloid burden in Alzheimer's disease. Neurobiol Aging. 2014;35(3):482–91. https://doi.org/10.1016/j.neurobiolaging.2013.09.029.

    Article  CAS  PubMed  Google Scholar 

  63. Grothe MJ, Schuster C, Bauer F, Heinsen H, Prudlo J, Teipel SJ. Atrophy of the cholinergic basal forebrain in dementia with Lewy bodies and Alzheimer's disease dementia. J Neurol. 2014;261(10):1939–48. https://doi.org/10.1007/s00415-014-7439-z.

    Article  PubMed  Google Scholar 

  64. • Schmitz TW, Nathan SR. Basal forebrain degeneration precedes and predicts the cortical spread of Alzheimer's pathology. Nat Commun. 2016;7:13249. https://doi.org/10.1038/ncomms13249. A serial MRI volumetry study showing that accelerated cholinergic forebrain degeneration precedes medial temporal lobe atrophy in the preclinical stage of AD

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wolf D, Grothe M, Fischer FU, Heinsen H, Kilimann I, Teipel S, et al. Association of basal forebrain volumes and cognition in normal aging. Neuropsychologia. 2014;53:54–63. https://doi.org/10.1016/j.neuropsychologia.2013.11.002.

    Article  CAS  PubMed  Google Scholar 

  66. •• Grothe MJ, Heinsen H, Amaro E Jr, Grinberg LT, Teipel SJ. Cognitive correlates of basal forebrain atrophy and associated cortical Hypometabolism in mild cognitive impairment. Cereb Cortex. 2016;26(6):2411–26. https://doi.org/10.1093/cercor/bhv062. A combined MRI volumetry and glucose metabolic PET imaging study providing in vivo lesion evidence for cholinergic mediated neural networks subserving memory and attention in the human brain

    Article  PubMed  Google Scholar 

  67. Chalfonte BL, Johnson MK. Feature memory and binding in young and older adults. Mem Cogn. 1996;24(4):403–16. https://doi.org/10.3758/BF03200930.

    Article  CAS  Google Scholar 

  68. Butler T, Zaborszky L, Pirraglia E, Li J, Wang XH, Li Y, et al. Comparison of human septal nuclei MRI measurements using automated segmentation and a new manual protocol based on histology. NeuroImage. 2014;97:245–51. https://doi.org/10.1016/j.neuroimage.2014.04.026.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ray NJ, Metzler-Baddeley C, Khondoker MR, Grothe MJ, Teipel S, Wright P, et al. Cholinergic basal forebrain structure influences the reconfiguration of white matter connections to support residual memory in mild cognitive impairment. J Neurosci. 2015;35(2):739–47. https://doi.org/10.1523/jneurosci.3617-14.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ranganath C, Ritchey M. Two cortical systems for memory-guided behaviour. Nat Rev Neurosci. 2012;13(10):713–26. https://doi.org/10.1038/nrn3338.

    Article  CAS  PubMed  Google Scholar 

  71. Gratwicke J, Kahan J, Zrinzo L, Hariz M, Limousin P, Foltynie T, et al. The nucleus basalis of Meynert: a new target for deep brain stimulation in dementia? Neurosci Biobehav Rev. 2013;37(10 Pt 2):2676–88. https://doi.org/10.1016/j.neubiorev.2013.09.003.

    Article  PubMed  Google Scholar 

  72. Rolinski M, Fox C, Maidment I, McShane R. Cholinesterase inhibitors for dementia with Lewy bodies, Parkinson's disease dementia and cognitive impairment in Parkinson's disease Cochrane Database. Syst Rev. 2012;3:CD006504. https://doi.org/10.1002/14651858.CD006504.pub2.

    Google Scholar 

  73. Behl P, Edwards JD, Kiss A, Lanctot KL, Streiner DL, Black SE, et al. Treatment effects in multiple cognitive domains in Alzheimer's disease: a two-year cohort study. Alzheimers Res Ther. 2014;6(4):48. https://doi.org/10.1186/alzrt280.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Cavedo E, Grothe MJ, Colliot O, Lista S, Chupin M, Dormont D, et al. Reduced basal forebrain atrophy progression in a randomized donepezil trial in prodromal Alzheimer's disease. Sci Rep. 2017;7(1):11706. https://doi.org/10.1038/s41598-017-09780-3.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kuhn J, Hardenacke K, Lenartz D, Gruendler T, Ullsperger M, Bartsch C, et al. Deep brain stimulation of the nucleus basalis of Meynert in Alzheimer's dementia. Mol Psychiatry. 2015;20(3):353–60. https://doi.org/10.1038/mp.2014.32.

    Article  CAS  PubMed  Google Scholar 

  76. • Lee JE, Cho KH, Song SK, Kim HJ, Lee HS, Sohn YH, et al. Exploratory analysis of neuropsychological and neuroanatomical correlates of progressive mild cognitive impairment in Parkinson's disease. J Neurol Neurosurg Psychiatry. 2014;85(1):7–16. https://doi.org/10.1136/jnnp-2013-305062. A longitudinal clinical observation study providing first in vivo evidence that MRI-measured cholinergic forebrain atrophy may predict imminent conversion to dementia in Parkinson Disease patients with MCI

    Article  PubMed  Google Scholar 

  77. Berger-Sweeney J. The cholinergic basal forebrain system during development and its influence on cognitive processes: important questions and potential answers. Neurosci Biobehav Rev. 2003;27(4):401–11. https://doi.org/10.1016/S0149-7634(03)00070-8.

    Article  CAS  PubMed  Google Scholar 

  78. Woolf NJ. Cholinergic systems in mammalian brain and spinal cord. Prog Neurobiol. 1991;37(6):475–524. https://doi.org/10.1016/0301-0082(91)90006-M.

    Article  CAS  PubMed  Google Scholar 

  79. Ballinger EC, Ananth M, Talmage DA, Role LW. Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline. Neuron. 2016;91(6):1199–218. https://doi.org/10.1016/j.neuron.2016.09.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bohnen NI, Kaufer DI, Hendrickson R, Ivanco LS, Lopresti BJ, Koeppe RA, et al. Degree of inhibition of cortical acetylcholinesterase activity and cognitive effects by donepezil treatment in Alzheimer's disease. J Neurol Neurosurg Psychiatry. 2005;76(3):315–9. https://doi.org/10.1136/jnnp.2004.038729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Risacher SL, McDonald BC, Tallman EF, West JD, Farlow MR, Unverzagt FW, et al. Association between anticholinergic medication use and cognition, brain metabolism, and brain atrophy in cognitively normal older adults. JAMA Neurol. 2016;73(6):721–32. https://doi.org/10.1001/jamaneurol.2016.0580.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lauretani F, Meschi T, Ticinesi A, Maggio M. Brain-muscle loop in the fragility of older persons: from pathophysiology to new organizing models. Aging Clin Exp Res. 2017;29(6):1305–11. https://doi.org/10.1007/s40520-017-0729-4.

    Article  PubMed  Google Scholar 

  83. Bohnen NI, Muller ML, Koeppe RA, Studenski SA, Kilbourn MA, Frey KA, et al. History of falls in Parkinson disease is associated with reduced cholinergic activity. Neurology. 2009;73(20):1670–6. https://doi.org/10.1212/WNL.0b013e3181c1ded6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bohnen NI, Frey KA, Studenski S, Kotagal V, Koeppe RA, Scott PJ, et al. Gait speed in Parkinson disease correlates with cholinergic degeneration. Neurology. 2013;81(18):1611–6. https://doi.org/10.1212/WNL.0b013e3182a9f558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ikonomovic MD, Mufson EJ, Wuu J, Cochran EJ, Bennett DA, DeKosky ST. Cholinergic plasticity in hippocampus of individuals with mild cognitive impairment: correlation with Alzheimer's neuropathology. J Alzheimers Dis. 2003;5(1):39–48. https://doi.org/10.3233/JAD-2003-5106.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The presented research data from the authors’ work was supported by grants from the NIH [P01 NS015655, RO1 NS070856, with additional support from P50 NS091856], Department of Veterans Affairs [I01 RX000317], and the Michael J. Fox Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolaas I. Bohnen.

Ethics declarations

Conflict of Interest

Michael Grothe and Nicola Ray declare no conflict of interest.

Nicolaas Bohnen reports grants from NIH, the Department of Veterans Affairs, the Michael J. Fox foundation, Axovant Sciences, and Chase Pharmaceuticals, outside the submitted work.

Stefan Teipel reports being an advisory board member of MSD Sharp and Dohme GMBH.

Martijn Müller reports grants from the NIH, the Michael J. Fox Foundation, and Veterans Affairs, during the conduct of this study.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

This article is part of the Topical Collection on Neurology of Aging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bohnen, N.I., Grothe, M.J., Ray, N.J. et al. Recent Advances in Cholinergic Imaging and Cognitive Decline—Revisiting the Cholinergic Hypothesis of Dementia. Curr Geri Rep 7, 1–11 (2018). https://doi.org/10.1007/s13670-018-0234-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13670-018-0234-4

Keywords

Navigation