Ectopic Pregnancy Risk with Assisted Reproductive Technology


Purpose of Review

To investigate the optimal methods for the reduction of ectopic pregnancy incidence due to assisted reproductive technology (ART).

Recent Findings

Day five or six blastocyst transfer may decrease ectopic pregnancy rates when compared with day three transfer, similarly, frozen-thawed embryo transfer may lessen the risk of ectopic pregnancy relative to fresh embryo transfer. Single embryo transfers decrease ectopic pregnancy risk and have similar clinical pregnancy outcomes as double embryo transfers.


Ectopic pregnancy remains a major cause of maternal morbidity and mortality in the first trimester of pregnancy. Compared with spontaneously conceived pregnancies, pregnancies resulting from in vitro fertilization (IVF) treatments are initially associated with an increased risk of an ectopic implantation. Many risk factors related to ART have been linked to increased ectopic pregnancy risk, though the exact mechanism underlying the link between ectopic pregnancy and ART remains unclear. Tubal factor infertility is the major risk factor for ectopic pregnancy following IVF. Day of transfer, fresh or frozen-thawed cycle single or double transfer are the main controversial factors regarding ectopic pregnancy risk. According to recent data, day 5 blastocyst transfer has decreased ectopic pregnancy risk than day 3, also frozen-thawed cycle has lower risk of ectopic implantation than fresh cycles. Single frozen-thawed blastocyst transfer may thus be the best choice for reducing ectopic pregnancy incidence among IVF patients. Further studies should be done to compare the ectopic pregnancy rates between the single frozen-thawed blastocyst transfer and spontaneous pregnancies.

This is a preview of subscription content, log in to check access.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Farquhar CM. " salpingostomy", and" salpingectomy". I searched the reference lists of articles identified by this search for further studies. Only articles published in English were searched. Lancet. 2005;366:583–91.

    Article  Google Scholar 

  2. 2.

    Refaat B, Dalton E, Ledger WL. Ectopic pregnancy secondary to in vitro fertilisation-embryo transfer: pathogenic mechanisms and management strategies. Reprod Biol Endocrinol. 2015;13(1):30.

    Article  Google Scholar 

  3. 3.

    Hsu JY, Chen L, Gumer AR, Tergas AI, Hou JY, Burke WM, et al. Disparities in the management of ectopic pregnancy. Am J Obstet Gynecol. 2017;217(1):49. e1–e10.

    Article  Google Scholar 

  4. 4.

    Bouyer J, Coste J, Shojaei T, Pouly J-L, Fernandez H, Gerbaud L, et al. Risk factors for ectopic pregnancy: a comprehensive analysis based on a large case-control, population-based study in France. Am J Epidemiol. 2003;157(3):185–94.

    Article  Google Scholar 

  5. 5.

    Marion LL, Meeks GR. Ectopic pregnancy: history, incidence, epidemiology, and risk factors. Clin Obstet Gynecol. 2012;55(2):376–86.

    Article  Google Scholar 

  6. 6.

    Strandell A, Thorburn J, Hamberger L. Risk factors for ectopic pregnancy in assisted reproduction. Fertil Steril. 1999;71(2):282–6.

    CAS  Article  Google Scholar 

  7. 7.

    Clayton HB, Schieve LA, Peterson HB, Jamieson DJ, Reynolds MA, Wright VC. Ectopic pregnancy risk with assisted reproductive technology procedures. Obstet Gynecol. 2006;107(3):595–604.

    Article  Google Scholar 

  8. 8.

    Marcus SF, Brinsden PR. Analysis of the incidence and risk factors associated with ectopic pregnancy following in-vitro fertilization and embryo transfer. Hum Reprod. 1995;10(1):199–203.

    CAS  Article  Google Scholar 

  9. 9.

    • Bu Z, Xiong Y, Wang K, Sun Y. Risk factors for ectopic pregnancy in assisted reproductive technology: a 6-year, single-center study. Fertil Steril. 2016;106(1):90–4 This study evaluates the all risk factors for ectopic pregnancy in ART patients and shows the ectopic pregnancy rates in patients diagnosed with tubal infertility.

    Article  Google Scholar 

  10. 10.

    Malak M, Tawfeeq T, Holzer H, Tulandi T. Risk factors for ectopic pregnancy after in vitro fertilization treatment. J Obstet Gynaecol Can. 2011;33(6):617–9.

    Article  Google Scholar 

  11. 11.

    Smith LP, Oskowitz SP, Dodge LE, Hacker MR. Risk of ectopic pregnancy following day-5 embryo transfer compared with day-3 transfer. Reprod BioMed Online. 2013;27(4):407–13.

    Article  Google Scholar 

  12. 12.

    Cheng L-Y, Lin P-Y, Huang F-J, Kung F-T, Chiang H-J, Lin Y-J, et al. Ectopic pregnancy following in vitro fertilization with embryo transfer: a single-center experience during 15 years. Taiwan J Obstet Gynecol. 2015;54(5):541–5.

    Article  Google Scholar 

  13. 13.

    Zhang B, Cui L, Tang R, Ding L, Yan L, Chen Z-J. Reduced ectopic pregnancy rate on day 5 embryo transfer compared with day 3: a meta-analysis. PLoS One. 2017;12(1):e0169837.

  14. 14.

    Li R-R, Dong Y-Z, Guo Y-H, Sun Y-P, Su Y-C, Chen F. Comparative study of pregnancy outcomes between day 3 embryo transfer and day 5 blastocyst transfer in patients with progesterone elevation. J Int Med Res. 2013;41(4):1318–25.

    Article  Google Scholar 

  15. 15.

    Fang C, Huang R, Wei L-N, Jia L. Frozen-thawed day 5 blastocyst transfer is associated with a lower risk of ectopic pregnancy than day 3 transfer and fresh transfer. Fertil Steril. 2015;103(3):655–61. e3.

    Article  Google Scholar 

  16. 16.

    Polyzos NP, Devroey P. Significantly lower ectopic pregnancy rates after frozen embryo transfer: implications toward segmentation of in vitro fertilization treatment. Fertil Steril. 2012;98(6):1419–20.

    Article  Google Scholar 

  17. 17.

    Huang B, Hu D, Qian K, Ai J, Li Y, Jin L, et al. Is frozen embryo transfer cycle associated with a significantly lower incidence of ectopic pregnancy? An analysis of more than 30,000 cycles. Fertil Steril. 2014;102(5):1345–9.

    Article  Google Scholar 

  18. 18.

    •• Zeng MF, Li LM. Frozen blastocyst transfer reduces incidence of ectopic pregnancy compared with fresh blastocyst transfer: a meta-analysis. Gynecol Endocrinol. 2019;35(2):93–9 This study is a new and largest meta-analysis about ectopic pregnancy and ART. The study shows the superiority of frozen-thawed blastocyst and single transfer.

    Article  Google Scholar 

  19. 19.

    Shapiro BS, Daneshmand ST, De Leon L, Garner FC, Aguirre M, Hudson C. Frozen-thawed embryo transfer is associated with a significantly reduced incidence of ectopic pregnancy. Fertil Steril. 2012;98(6):1490–4.

    Article  Google Scholar 

  20. 20.

    Xiao S, Mo M, Hu X, Zhang H, Xu S, Wang Z, et al. Study on the incidence and influences on heterotopic pregnancy from embryo transfer of fresh cycles and frozen-thawed cycles. J Assist Reprod Genet. 2018;35(4):677–81.

    Article  Google Scholar 

  21. 21.

    Pansky B. Review of medical embryology: Macmillan; 1982;4(2):123–9.

  22. 22.

    Milki AA, Jun SH. Ectopic pregnancy rates with day 3 versus day 5 embryo transfer: a retrospective analysis. BMC Pregnancy Childbirth. 2003;3(1):7.

    Article  Google Scholar 

  23. 23.

    Schoolcraft WB, Surrey ES, Gardner DK. Embryo transfer: techniques and variables affecting success. Fertil Steril. 2001;76(5):863–70.

    CAS  Article  Google Scholar 

  24. 24.

    Fanchin R, Ayoubi J-M, Righini C, Olivennes F, Schönauer LM, Frydman R. Uterine contractility decreases at the time of blastocyst transfers. Hum Reprod. 2001;16(6):1115–9.

    CAS  Article  Google Scholar 

  25. 25.

    Toikkanen S, Joensuu H, Erkkola R. DNA aneuploidy in ectopic pregnancy and spontaneous abortions. Eur J Obstet Gynecol Reprod Biol. 1993;51(1):9–13.

    CAS  Article  Google Scholar 

  26. 26.

    Elias S, Lebeau M, Simpson JL, Martin AO. Chromosome analysis of ectopic human conceptuses. Am J Obstet Gynecol. 1981;141(5):698–703.

    CAS  Article  Google Scholar 

  27. 27.

    Karaki RZ, Samarraie SS, Younis NA, Lahloub TM, Ibrahim MH. Blastocyst culture and transfer: a step toward improved in vitro fertilization outcome. Fertil Steril. 2002;77(1):114–8.

    Article  Google Scholar 

  28. 28.

    Abdelmassih V, Balmaceda JP, Nagy ZP, Abdelmassih S, Abdelmassih R. ICSI and day 5 embryo transfers: higher implantation rates and lower rate of multiple pregnancy with prolonged culture. Reprod BioMed Online. 2001;3(3):216–20.

    Article  Google Scholar 

  29. 29.

    Sekhon L, Lee J, Mehta S, Mukherjee T, Sandler B, Copperman AB. Are euploid embryos less likely to result in ectopic implantation?[16]. Obstet Gynecol. 2016;127:6S.

    Article  Google Scholar 

  30. 30.

    Kalra SK, Ratcliffe SJ, Coutifaris C, Molinaro T, Barnhart KT. Ovarian stimulation and low birth weight in infants conceived through in vitro fertilization. Obstet Gynecol. 2011;118(4):863–71.

    Article  Google Scholar 

  31. 31.

    Reljič M, Knez J, Vlaisavljević V. Human chorionic gonadotropin levels are equally predictive for pregnancy outcome after fresh and vitrified-warmed blastocyst transfer. J Assist Reprod Genet. 2013;30(11):1459–63.

    Article  Google Scholar 

  32. 32.

    Ishihara O, Kuwahara A, Saitoh H. Frozen-thawed blastocyst transfer reduces ectopic pregnancy risk: an analysis of single embryo transfer cycles in Japan. Fertil Steril. 2011;95(6):1966–9.

    Article  Google Scholar 

  33. 33.

    Hoover RN, Hyer M, Pfeiffer RM, Adam E, Bond B, Cheville AL, et al. Adverse health outcomes in women exposed in utero to diethylstilbestrol. N Engl J Med. 2011;365(14):1304–14.

    CAS  Article  Google Scholar 

  34. 34.

    Acharya KS, Acharya CR, Provost MP, Yeh JS, Steward RG, Eaton JL, et al. Ectopic pregnancy rate increases with the number of retrieved oocytes in autologous in vitro fertilization with non-tubal infertility but not donor/recipient cycles: an analysis of 109,140 clinical pregnancies from the Society for Assisted Reproductive Technology registry. Fertil Steril. 2015;104(4):873–8.

    Article  Google Scholar 

  35. 35.

    Wang J, Wei Y, Diao F, Cui Y, Mao Y, Wang W, et al. The association between polycystic ovary syndrome and ectopic pregnancy after in vitro fertilization and embryo transfer. Am J Obstet Gynecol. 2013;209(2):139. e1–9.

    Article  Google Scholar 

  36. 36.

    Shao R, Feng Y, Zou S, Weijdegård B, Wu G, Brännström M, et al. The role of estrogen in the pathophysiology of tubal ectopic pregnancy. Am J Transl Res. 2012;4(3):269–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Nakahari T, Nishimura A, Shimamoto C, Sakai A, Kuwabara H, Nakano T, et al. The regulation of ciliary beat frequency by ovarian steroids in the Guinea pig fallopian tube: interactions between oestradiol and progesterone. Biomed Res. 2011;32(5):321–8.

    CAS  Article  Google Scholar 

  38. 38.

    Shao R, Egecioglu E, Weijdegard B, Kopchick JJ, Fernandez-Rodriguez J, Andersson N, et al. Dynamic regulation of estrogen receptor-α isoform expression in the mouse fallopian tube: mechanistic insight into estrogen-dependent production and secretion of insulin-like growth factors. Am J Physiol Endocrinol Metab. 2007;293(5):E1430–E42.

    CAS  Article  Google Scholar 

  39. 39.

    Wang H, Dey SK. Roadmap to embryo implantation: clues from mouse models. Nat Rev Genet. 2006;7(3):185–99.

    Article  Google Scholar 

  40. 40.

    Mullin CM, Fino ME, Talebian S, Krey LC, Licciardi F, Grifo JA. Comparison of pregnancy outcomes in elective single blastocyst transfer versus double blastocyst transfer stratified by age. Fertil Steril. 2010;93(6):1837–43.

    Article  Google Scholar 

  41. 41.

    Grady R, Alavi N, Vale R, Khandwala M, McDonald SD. Elective single embryo transfer and perinatal outcomes: a systematic review and meta-analysis. Fertil Steril. 2012;97(2):324–31. e8.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Cihan Karadağ.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Ectopic Pregnancy

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karadağ, C., Çalışkan, E. Ectopic Pregnancy Risk with Assisted Reproductive Technology. Curr Obstet Gynecol Rep (2020).

Download citation


  • Ectopic pregnancy
  • Assisted reproduction
  • Assisted reproductive technology
  • Infertility
  • IVF