Nutrigenetics/Nutrigenomics, Personalized Nutrition, and Precision Healthcare

Abstract

Purpose of Review

The purposes of the present review are to examine the emergence of nutrigenetics/nutrigenomics, to analyze the relationship between nutrigenetics and nutrigenomics, to explore the impact of nutrigenetics/nutrigenomics on healthcare with respect to noncommunicable diseases, and to discuss the challenges facing the implementation of nutrigenetics/nutrigenomics within healthcare.

Recent Findings

Nutrigenetics/nutrigenomics is certainly a thriving specialty given the sharp increase of publications over the last two decades. The relationship between nutrigenetics and nutrigenomics is proposed as complementary. The current clinical and research literature supports the significant impact nutrigenetics/nutrigenomics has on treating and preventing noncommunicable diseases. Although several challenges face the implementation of nutrigenetics/nutrigenomics into healthcare, they are not insurmountable.

Summary

Nutrigenetics/nutrigenomics plays an important role not only in treating diseases and illnesses but also in promoting health and wellness through both basic and clinical research; and it is critical for the future of both personalized nutrition and precision healthcare.

This is a preview of subscription content, log in to check access.

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    De Caterina R, Martinez JA, Kohlmeier M, editors. Principles of nutrigenetics and nutrigenomics: fundamentals of individualized nutrition. London: Academic Press; 2020.

    Google Scholar 

  2. 2.

    Ferguson LR. Nutrigenomics and nutrigenetics in functional foods and personalized nutrition. Boca Raton: CRC Press; 2014.

    Google Scholar 

  3. 3.

    Roper JA. Genetic determination of nutritional requirements. Proc Nutr Soc. 1960;19:39–45.

    CAS  PubMed  Google Scholar 

  4. 4.

    Brennan RO, Mulligan WC. Nutrigenetics: new concepts for relieving hypoglycemia. New York: M. Evans & Co; 1975.

    Google Scholar 

  5. 5.

    Fogg-Johnson N, Merolli A. Nutrigenomics: the next wave in nutrition research. Nutraceuticals World. 2000;3:86–95.

    Google Scholar 

  6. 6.

    Simopoulos AP. Editorial. J Nutrigenet Nutrigenomics. 2008;1:2–3.

    Google Scholar 

  7. 7.

    • Mutch DM, Zulyniak MA, Rudkowska I, et al. Lifestyle genomics: addressing the multifactorial nature of personalized health. Lifestyle Genomics. 2018;11:1–8 In this editorial, the authors discuss the change from theJournal of Nutrigenetics and Nutrigenomicsto Lifestyle Genomics. One major contributor to the change is that lifestyle factors other than diet have a significant impact on health and disease.

    PubMed  Google Scholar 

  8. 8.

    Ordovas JM, Mooser V. Nutrigenomics and nutrigenetics. Curr Opin Lipidol. 2004;15:101–8.

    CAS  PubMed  Google Scholar 

  9. 9.

    Cornelis MC. Coffee intake. Prog Mol Biol Transl Sci. 2012;108:293–322.

    CAS  PubMed  Google Scholar 

  10. 10.

    Thorn CF, Aklillu E, McDonagh EM, et al. PharmGKB summary: caffeine pathway. Pharmacogenet Genomics. 2012;22:389–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Carlberg C, Ulven SM, Molnár F, editors. Nutrigenomics. Basel: Springer; 2016.

    Google Scholar 

  12. 12.

    Sales NMR, Pelegrini PB, Goersch MC. Nutrigenomics: definitions and advances of this new science. J Nutr Metab 2014. http://downloads.hindawi.com/journals/jnme/2014/202759.pdf. Accessed 12 Jan 2020.

  13. 13.

    Solanky KS, Bailey NJ, Beckwith-Hall BM, et al. Biofluid 1H NMR-based metabonomic techniques in nutrition research—metabolic effects of dietary isoflavones in humans. J Nutr Biochem. 2005;16:236–44.

    CAS  PubMed  Google Scholar 

  14. 14.

    Dimitrov DV. The human gutome: nutrigenomics of the host–microbiome interactions. OMICS. 2011;15:419–30.

    CAS  PubMed  Google Scholar 

  15. 15.

    •• Ordovas JM, Ferguson LR, Tai ES, et al. Personalised nutrition and health. Br Med J. 2018;361. https://www.bmj.com/content/bmj/361/bmj.k2173.full.pdf. Accessed 10 Feb 2020. The authors review the current state of personalized nutrition and its role in healthcare. Although they acknowledge that personalized nutrition is important for providing quality healthcare, there are several challenges facing its implementation in healthcare.

  16. 16.

    Simopoulos AP, Milner JA, editors. Personalized nutrition: translating nutrigenetic/nutrigenomic research into dietary guidelines. Basel: Karger; 2010.

    Google Scholar 

  17. 17.

    Hunter DJ, Reddy KS. Noncommunicable diseases. N Engl J Med. 2013;369:1336–43.

    CAS  PubMed  Google Scholar 

  18. 18.

    NCD Countdown 2030 Collaborators. NCD Countdown 2030: Worldwide trends in non-communicable disease mortality and progress towards Sustainable Development Goal target 3.4. Lancet. 2018;392:1072–88.

    Google Scholar 

  19. 19.

    World Health Organization. Noncommunicable diseases. 2018. https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases. Accessed 2 Jan 2020.

  20. 20.

    •• Egger G, Binns A, Rössner S, Sagner M. Lifestyle medicine: lifestyle, the environment and preventive medicine in health and disease. 3rd ed. London: Academic Press; 2017. A very important collection of essays on lifestyle medicine. The topics range from the foundations of lifestyle medicine to its application to chronic diseases, as well as to its role in the future of healthcare.

    Google Scholar 

  21. 21.

    Galabos L, Sturchio JL, Whitehead RC, editors. Noncommunicable diseases in the developing world: addressing gaps in global policy and research. Baltimore: The Johns Hopkins University Press; 2014.

    Google Scholar 

  22. 22.

    • Jaacks LM, Vandevijvere S, Pan A, et al. The obesity transition: stages of the global epidemic. Lancet Diabetes Endocrinol. 2019;7:231–40 This is an important article on examining the obesity transition over the past four decades. The authors propose a four-stage model to account for the transition. Their goal is to provide guidance for researchers and policy makers to stem the transition in the future.

    PubMed  Google Scholar 

  23. 23.

    Kim R, Lee DH, Subramanian SV. Understanding the obesity epidemic. Br Med J. 2019;366 https://www.bmj.com/content/366/bmj.l4409. Accessed 24 Jan 2020.

  24. 24.

    • Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019;15:288–98 In this review article, the author discusses not only the pandemic nature of global obesity but also its regional differences. He addresses the challenges facing the translation of our understanding of what causes obesity into actionable treatment and prevention.

    PubMed  Google Scholar 

  25. 25.

    World Health Organization. Obesity and overweight. 2018. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. Accessed 2 Jan 2020.

  26. 26.

    GBD 2015 Obesity Collaborators. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377:13–27.

    Google Scholar 

  27. 27.

    Townshend T, Lake A. Obesogenic environments: current evidence of the built and food environments. Perspect Public Health. 2017;137:38–44.

    PubMed  Google Scholar 

  28. 28.

    • Goodarzi MO. Genetics of obesity: what genetic association studies have taught us about the biology of obesity and its complications. Lancet Diabetes Endocrinol. 2018;6:223–36 The authors review the more than 300 SNPs identified through GWAS associated with obesity. They discuss the importance of these SNPs for understanding the complexity of obesity in terms of lifestyle and environmental interactions.

    CAS  PubMed  Google Scholar 

  29. 29.

    Loos RJ, Yeo GS. The bigger picture of FTO—the first GWAS-identified obesity gene. Nat Rev Endocrinol. 2014;10:51–61.

    CAS  PubMed  Google Scholar 

  30. 30.

    Brunkwall L, Ericson U, Hellstrand S, et al. Genetic variation in the fat mass and obesity-associated gene (FTO) in association with food preferences in healthy adults. Food Nutr Res 2013;57. https://foodandnutritionresearch.net/index.php/fnr/article/view/529/861. Accessed 29 April 2020.

  31. 31.

    • Drabsch T, Holzapfel C. A scientific perspective of personalised gene-based dietary recommendations for weight management. Nutrients. 2019;11 https://www.mdpi.com/2072-6643/11/3/617. Accessed 28 Dec 2019. The authors discuss the problems associated with “one size fits all” diets. They go on to review current studies on gene-based personalized nutrition and propose that human intervention studies are required to provide the evidence needed for gene-based dietary recommendations.

  32. 32.

    Heianza Y, Qi L. Gene-diet interaction and precision nutrition in obesity. Int J Mol Sci 2017;18. https://www.mdpi.com/1422-0067/18/4/787. Accessed 20 Feb 2020.

  33. 33.

    Khaodhiar L, McCowen KC, Blackburn GL. Obesity and its comorbid conditions. Clin Cornerstone. 1999;2:17–31.

    CAS  PubMed  Google Scholar 

  34. 34.

    NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4 4 million participants. Lancet. 2016;387:1513–30.

    Google Scholar 

  35. 35.

    Al-Goblan AS, Al-Alfi MA, Khan MZ. Mechanism linking diabetes mellitus and obesity. Diabetes Metab Syndr Obes. 2014;7:587–91.

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Grarup N, Sandholt CH, Hansen T, et al. Genetic susceptibility to type 2 diabetes and obesity: from genome-wide association studies to rare variants and beyond. Diabetologia. 2014;57:1528–41.

    CAS  PubMed  Google Scholar 

  37. 37.

    Unnikrishnan R, Pradeepa R, Joshi SR, et al. Type 2 diabetes: demystifying the global epidemic. Diabetes. 2017;66:1432–42.

    CAS  PubMed  Google Scholar 

  38. 38.

    Nguyen-Tu MS, da Silva XG, Leclerc I, et al. Transcription factor-7–like 2 (TCF7L2) gene acts downstream of the Lkb1/Stk11 kinase to control mTOR signaling, β cell growth, and insulin secretion. J Biol Chem. 2018;293:14178–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Berná G, Oliveras-López M, Jurado-Ruíz E, et al. Nutrigenetics and nutrigenomics insights into diabetes etiopathogenesis. Nutrients. 2014;6:5338–69.

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Harrington JM, Phillips CM. Nutrigenetics: bridging two worlds to understand type 2 diabetes. Curr Diab Rep. 2014;14. https://doi.org/10.1007/s11892-014-0477-1 Accessed 20 Dec 2019.

  41. 41.

    Ortega Á, Berná G, Rojas A, et al. Gene-diet interactions in type 2 diabetes: the chicken and egg debate. Int J Mol Sci 2017; 18. https://www.mdpi.com/1422-0067/18/6/1188. Accessed 12 Dec 2019.

  42. 42.

    Zimmet PZ, Magliano DJ, Herman WH, et al. Diabetes: a 21st century challenge. Lancet Diabetes Endocrinol. 2014;2:56–64.

    PubMed  Google Scholar 

  43. 43.

    World Health Organization. Cancer. 2018; https://www.who.int/news-room/fact-sheets/detail/cancer. Accessed 12 Jan 2020.

  44. 44.

    Elsamanoudy AZ, Neamat-Allah MAM, Mohammad FAH, et al. The role of nutrition related genes and nutrigenetics in understanding the pathogenesis of cancer. J Microsc Ultrastruct. 2016;4:115–22.

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    • Patel A, Pathak Y, Patel J, et al. Role of nutritional factors in pathogenesis of cancer. Food Qual Saf. 2018;2:27–36 The authors discuss the role of nutrients, especially micronutrients, in terms of modulating the mechanism of carcinogenesis. They also explore the relationship between these nutrients and genetic expression as it relates to the etiology of cancer.

    CAS  Google Scholar 

  46. 46.

    Rohan TE, Bain CJ. Diet in the etiology of breast cancer. Epidemiol Rev. 1987;9:120–45.

    CAS  PubMed  Google Scholar 

  47. 47.

    Chittiboyina S, Chen Z, Chiorean EG, et al. The role of the folate pathway in pancreatic cancer risk. PLoS One. 2018:13. https://doi.org/10.1371/journal.pone.0193298 Accessed 15 Jan 2020.

  48. 48.

    Choi SW, Mason JB. Folate and carcinogenesis: an integrated scheme. J Nutr. 2000;130:129–32.

    CAS  PubMed  Google Scholar 

  49. 49.

    Kadayifci FZ, Zheng S, Pan Y-X. Molecular mechanisms underlying the link between diet and DNA methylation. Int J Mol Sci 2018;19. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6320837/pdf/ijms-19-04055.pdf. Accessed 30 April 2020.

  50. 50.

    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    CAS  PubMed  Google Scholar 

  51. 51.

    Tang PK. Consume, digest, and expire: the risks of domesticated carcinogens. Lancet Oncol. 2016;17:24–5.

    PubMed  Google Scholar 

  52. 52.

    Ardekani AM, Jabbari S. Nutrigenomics and cancer. Avicenna J Med Biotechnol. 2009;1:9–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Nicastro HL, Trujillo EB. Milner JA. Nutrigenomics Cancer Prev Curr Nutr Rep. 2012;1:37–43.

    CAS  Google Scholar 

  54. 54.

    Braicu C, Mehterov N, Vladimirov B, et al. Nutrigenomics in cancer: revisiting the effects of natural compounds. Semin Cancer Biol. 2017;46:84–106.

    CAS  PubMed  Google Scholar 

  55. 55.

    Berghe WV. Epigenetic impact of dietary polyphenols in cancer chemoprevention: lifelong remodeling of our epigenomes. Pharmacol Res. 2012;65:565–76.

    Google Scholar 

  56. 56.

    Marcum JA. The cancer epigenome: a review. J Biotechnol Biomed. 2019;2:67–83.

    Google Scholar 

  57. 57.

    • Irimie AI, Braicu C, Pasca S, et al. Role of key micronutrients from nutrigenetic and nutrigenomic perspectives in cancer prevention. Medicina. 2019;55 https://www.mdpi.com/1010-660X/55/6/283. Accessed 28 Dec 2019. In this rather comprehensive review, the authors discuss the various key micronutrients, such as vitamins, selenium, and dietary fiber, involved in carcinogenesis and its prevention. Importantly, they frame their discussion in terms of the hallmarks of cancer.

  58. 58.

    Calado A, Neves PM, Santos T, et al. The effect of flaxseed in breast cancer: a literature review. Front Nutr. 2018;5. https://doi.org/10.3389/fnut.2018.00004/full Accessed 24 Jan 2020.

  59. 59.

    De Silva SF, Alcorn J. Flaxseed lignans as important dietary polyphenols for cancer prevention and treatment: chemistry, pharmacokinetics, and molecular targets. Pharmaceuticals. 2019;12. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6630319/pdf/pharmaceuticals-12-00068.pdf. Accessed 30 April 2020.

  60. 60.

    Martín-Hernández R, Reglero G, Dávalos A. Data mining of nutrigenomics experiments: identification of a cancer protective gene signature. J Funct Foods. 2018;42:380–6.

    Google Scholar 

  61. 61.

    Royston KJ, Paul B, Nozell S, et al. Withaferin A and sulforaphane regulate breast cancer cell cycle progression through epigenetic mechanisms. Exp Cell Res. 2018;368:67–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Kang JX. Nutrigenomics and cancer therapy. J Nutrigenet Nutrigenomics. 2013;6:I–II.

    PubMed  Google Scholar 

  63. 63.

    Dagenais GR, Leong DP, Rangarajan S, et al. Variations in common diseases, hospital admissions, and deaths in middle-aged adults in 21 countries from five continents (PURE): a prospective cohort study. Lancet. 2020;395:785–94.

    PubMed  Google Scholar 

  64. 64.

    Wilmot KA, O’Flaherty M, Capewell S, et al. Coronary heart disease mortality declines in the United States from 1979 through 2011: evidence for stagnation in young adults, especially women. Circulation. 2015;132:997–1002.

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Anand SS, Hawkes C, De Souza RJ, et al. Food consumption and its impact on cardiovascular disease: importance of solutions focused on the globalized food system: a report from the workshop convened by the World Heart Federation. J Am Coll Cardiol. 2015;66:1590–614.

    PubMed  PubMed Central  Google Scholar 

  66. 66.

    • Brandhorst S, Longo VD. Dietary restrictions and nutrition in the prevention and treatment of cardiovascular disease. Circ Res. 2019;124:952–65 The authors review the various risk factors associated with cardiovascular diseases with respect to dietary factors. They frame their review in terms of four pillars: basic research, epidemiology, clinical studies, and centenarian studies.

    CAS  PubMed  Google Scholar 

  67. 67.

    Sacks FM, Lichtenstein AH, Wu JH, et al. Dietary fats and cardiovascular disease: a presidential advisory from the American Heart Association. Circulation. 2017;136:e1–e23.

    PubMed  Google Scholar 

  68. 68.

    Lichtenstein AH. Dietary fat and cardiovascular disease: ebb and flow over the last half century. Adv Nutr. 2019;10:S332–9.

    PubMed  Google Scholar 

  69. 69.

    Briggs MA, Petersen KS, Kris-Etherton PM. Saturated fatty acids and cardiovascular disease: replacements for saturated fat to reduce cardiovascular risk. Healthcare. 2017;5. https://www.mdpi.com/2227-9032/5/2/29. Accessed 2 March 2020.

  70. 70.

    Corella D, Ordovas JM. Nutrigenomics in cardiovascular medicine. Circ Cardiovasc Genet. 2009;2:637–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Nuno NB, Heuberger R. Nutrigenetic associations with cardiovascular disease. Rev Cardiovasc Med. 2014;15:217–25.

    PubMed  Google Scholar 

  72. 72.

    Merched AJ, Chan L. Nutrigenetics and nutrigenomics of atherosclerosis. Curr Atheroscler Rep 2013;15. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4003879/pdf/nihms572659.pdf. Accessed 29 April 2020.

  73. 73.

    Lovegrove JA, Gitau R. Personalized nutrition for the prevention of cardiovascular disease: a future perspective. J Hum Nutr Diet. 2008;21:306–16.

    CAS  PubMed  Google Scholar 

  74. 74.

    Ferguson F, Allayee H, Gerszten RE, et al. Nutrigenomics, the microbiome, and gene-environment interactions: new directions in cardiovascular disease research, prevention, and treatment: a scientific statement from the American Heart Association. Circ Cardiovasc Genet. 2016;9:291–313.

    CAS  PubMed  Google Scholar 

  75. 75.

    Hurlimann T, Menuz V, Graham J, et al. Risks of nutrigenomics and nutrigenetics? What the scientists say. Genes Nutr. 2014;9. https://doi.org/10.1007/s12263-013-0370-6 Accessed 10 March 2020.

  76. 76.

    Reddy VS, Palika R, Ismail A, Pullakhandam R, Reddy GB. Nutrigenomics: opportunities & challenges for public health nutrition. Indian J Med Res. 2018;148:632–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Zeisel SH. A grand challenge for nutrigenomics. Front Genet. 2010;1. https://doi.org/10.3389/fgene.2010.00002/full .

  78. 78.

    Mathers JC. Nutrigenomics in the modern era. Proc Nutr Soc. 2017;76:265–75.

    PubMed  Google Scholar 

  79. 79.

    Ravi Subbiah MR. Understanding the nutrigenomic definitions and concepts at the food–genome junction. OMICS. 2008:12229–35.

  80. 80.

    Portin P, Wilkins A. The evolving definition of the term “gene”. Genetics. 2017;205:1353–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Godard B, Hurlimann T. Nutrigenomics for global health: ethical challenges for underserved populations. Curr Pharmacogenomics Person Med. 2009;7:205–14.

    CAS  Google Scholar 

  82. 82.

    Ferguson LR, De Caterina R, Görman U, et al. Guide and position of the International Society of Nutrigenetics/Nutrigenomics on personalized nutrition: part 1— fields of precision nutrition. J Nutrigenet Nutrigenomics. 2016;9:12–27.

    PubMed  Google Scholar 

  83. 83.

    Kohlmeier M, De Caterina R, Ferguson LR, et al. Guide and position of the International Society of Nutrigenetics/Nutrigenomics on personalized nutrition: part 2—ethics, challenges and endeavors of precision nutrition. J Nutrigenet Nutrigenomics. 2016;9:28–46.

    PubMed  Google Scholar 

  84. 84.

    Castle D, Ries NM. Ethical, legal and social issues in nutrigenomics: the challenges of regulating service delivery and building health professional capacity. Mutat Res. 2007;622:138–43.

    CAS  PubMed  Google Scholar 

  85. 85.

    Pavlidis C, Patrinos GP, Katsila T. Nutrigenomics: a controversy. Appl Transl Genom. 2015;4:50–3.

    PubMed  PubMed Central  Google Scholar 

  86. 86.

    Dinu M, Pagliai G, Casini A, et al. Mediterranean diet and multiple health outcomes: an umbrella review of meta-analyses of observational studies and randomised trials. Eur J Clin Nutr. 2018;72:30–43.

    CAS  PubMed  Google Scholar 

  87. 87.

    D’Innocenzo S, Biagi C, Lanari M. Obesity and the Mediterranean diet: a review of evidence of the role and sustainability of the Mediterranean diet. Nutrients. 2019;11. https://www.mdpi.com/2072-6643/11/6/1306. Accessed 12 March 2020.

  88. 88.

    Esposito K, Maiorino MI, Bellastella G, et al. Mediterranean diet for type 2 diabetes: cardiometabolic benefits. Endocrine. 2017;56:27–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Mentella MC, Scaldaferri F, Ricci C, et al. Cancer and Mediterranean diet: a review. Nutrients. 2019;11. https://www.mdpi.com/2072-6643/11/9/2059. Accessed 29 Feb 2020.

  90. 90.

    Martínez-González MA, Gea A, Ruiz-Canela M. The Mediterranean diet and cardiovascular health: a critical review. Circ Res. 2019;124:779–98.

    PubMed  Google Scholar 

  91. 91.

    Marantz PR. Rethinking dietary guidelines. Crit Rev Food Sci Nutr. 2010;50:17–8.

    PubMed Central  Google Scholar 

  92. 92.

    Iacoviello L. Perspectives and challenges for adoption of the Mediterranean diet. Eur J Pub Health. 2018;28:261–2.

    Google Scholar 

  93. 93.

    Kaput J. Nutrigenomics research for personalized nutrition and medicine. Curr Opin Biotechnol. 2008;19:110–20.

    CAS  PubMed  Google Scholar 

  94. 94.

    Palou A. From nutrigenomics to personalised nutrition. Genes Nutr. 2007;2:5–7.

    PubMed  PubMed Central  Google Scholar 

  95. 95.

    •• Bush CL, Blumberg JB, El-Sohemy A, et al. Toward the definition of personalized nutrition: a proposal by The American Nutrition Association. J Am Coll Nutr. 2020;39:5–15 In this important article from the proceedings of the 2019 American College of Nutrition Meeting, the authors propose a standard definition for personalized nutrition for guiding research, clinical practice, and healthcare policy formation. They conclude with a discussion of the challenges facing personalized nutrition in the twenty-first century.

    PubMed  Google Scholar 

  96. 96.

    Komduur RH, Korthals M, Te Molder H. The good life: living for health and a life without risks? on a prominent script of nutrigenomics. Br J Nutr. 2008;101:307–16.

    PubMed  Google Scholar 

  97. 97.

    •• Aruoma OI, Hausman-Cohen S, Pizano J, et al. Personalized nutrition: translating the science of nutrigenomics into practice. J Am Coll Nutr. 2019;38:287–301 In this important article from the proceedings of the 2018 American College of Nutrition Meeting, the authors discuss the translation of nutrigenomics into personalized clinical practice and the challenges facing it.

    PubMed  Google Scholar 

  98. 98.

    Loos RJF. From nutrigenomics to personalizing diets: are we ready for precision medicine? Am J Clin Nutr. 2019;109:1–2.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to James A. Marcum.

Ethics declarations

Conflict of Interest

Dr. Marcum has nothing to disclose.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Diabetes and Obesity

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marcum, J.A. Nutrigenetics/Nutrigenomics, Personalized Nutrition, and Precision Healthcare. Curr Nutr Rep (2020). https://doi.org/10.1007/s13668-020-00327-z

Download citation

Keywords

  • Cancers
  • Cardiovascular diseases
  • Nutrigenetics/nutrigenomics
  • Obesity
  • Personalized nutrition
  • Type 2 diabetes mellitus