Skip to main content

Advertisement

Log in

Obesity, Diet and the Gut Microbiota

  • Diabetes and Obesity (L Qi, Section Editor)
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

A possible causal role of the gut microbiota in human obesity is capturing interest. Recent experimental evidence and mechanistic hypotheses suggest that a ‘dysbiotic’ large bowel microbiota, induced mainly by poor diet, increases dietary energy bioavailability and storage in the host. However, research findings in both animals and humans are inconsistent and whether an altered gut microbiota meaningfully impacts host energetics remains an open question. Future intervention studies must control diet and other lifestyle factors that profoundly influence the composition and activity of the intestinal microbiota to define its potential role in and contribution to the human obesity problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384:766–81.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Huang T, Hu FB. Gene-environment interactions and obesity: recent developments and future directions. Medical Genet. 2015;8 Suppl 1:S2–7.

    Google Scholar 

  3. Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R. Human genetics shape the gut microbiome. Cell. 2014;159:789–99.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Parks BW, Nam E, Org E, Kostem E, Norheim F, Hui ST, et al. Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice. Cell Metab. 2013;17:141–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Friedman JM. Causes and control of excess body fat. Nature. 2009;459:340–2.

    Article  CAS  PubMed  Google Scholar 

  6. Turnbaugh PJ, Backhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008;3:213–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102:11070–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–31.

    Article  PubMed  Google Scholar 

  9. Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101:15718–23.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Heinken A, Thiele I. Systems biology of host–microbe metabolomics. WIREs Syst Biol Med. 2015;7:195–219.

    Article  Google Scholar 

  11. Burcelin R, Serino M, Chabo C, Garidou L, Pomie C, Courtney M, et al. Metagenome and metabolism: the tissue microbiota hypothesis. Diabetes Obes Metab. 2013;15 Suppl 3:61–70.

    Article  CAS  PubMed  Google Scholar 

  12. Romani L, Zelante T, Palmieri M, Napolioni V, Picciolini M, Velardi A. The cross-talk between opportunistic fungi and the mammalian host via microbiota’s metabolism. Semin Immunopathol. 2015;37:163–71.

    Article  CAS  PubMed  Google Scholar 

  13. Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT, et al. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–14.

    Article  CAS  Google Scholar 

  14. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. Science. 2005;308:1635–8.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Huse SM, Ye YZ, Zhou YJ, Fodor AA. A core human microbiome as viewed through 16S rRNA sequence clusters. PLoS One. 2012;7:e34242.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63. Intervention study showing the considerable capacity of the large bowel (fecal) microbiota to respond to dietary change.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Simoes CD, Virtanen KA, Maukonen J, Scott KP, Pietilainen KH, Saarela M. Impact of a very low-energy diet on the fecal microbiota of obese individuals. Eur J Nutr. 2014;53:1421–9.

    Article  CAS  PubMed  Google Scholar 

  18. Voreades N, Kozil A, Weir TL. Diet and the development of the human intestinal microbiome. Front Microbiol. 2014;5:494.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Halmos EP, Christophersen CT, Bird AR, Shepherd SJ, Gibson PR, Muir JG. Diets that differ in their FODMAP content alter the colonic luminal microenvironment. Gut. 2015;64(1):93–100.

    Article  CAS  PubMed  Google Scholar 

  20. Nielsen DS, Krych L, Buschard K, Hansen CHF, Hansen AK. Beyond genetics. Influence of dietary factors and gut microbiota on type 1 diabetes. FEBS Lett. 2015;588:4234–43.

    Article  CAS  Google Scholar 

  21. Tai N, Wong FS, Wen L. The role of gut microbiota in the development of type 1, type 2 diabetes mellitus and obesity. Rev Endocr Metab Disord. 2015;16:55–65.

    Article  CAS  PubMed  Google Scholar 

  22. Ridaura VK, Jeremiah JF, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341:1241214.

    Article  PubMed  CAS  Google Scholar 

  23. Fei N, Zhao L. An opportunistic pathogen isolated from the gut of an obese human causes obesity in germ free mice. ISME J. 2013;7:880–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Fleissner CK, Huebel N, Abd El-Bary MM, Loh G, Klaus S, Blaut M. Absence of intestinal microbiota does not protect mice from diet-induced obesity. Br J Nutr. 2010;104:919–29.

    Article  CAS  PubMed  Google Scholar 

  25. Zhao L. The gut microbiota and obesity: from correlation to causality. Nat Rev Microbiol. 2013;11:639–47.

    Article  CAS  PubMed  Google Scholar 

  26. Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M, Chen Y-Y, et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology. 2009;137:1716–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Zhang CH, Zhang MH, Pang XY, Zhao YF. Structural resilience of the gut microbiota in adult mice under high-fat dietary perturbations. ISME J. 2012;6:1848–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Krych L, Hansen CHF, Hansen AK, van den Berg FWJ, Nielsen DS. Quantitatively different, yet qualitatively alike: a meta-analysis of the mouse core gut microbiome with a view towards the human gut microbiome. PLoS One. 2013;8:e62578.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Le Leu RK, Conlon MA, Bird AR, Clarke JM. Housing experimental rats in solid-based cages with digestible bedding may confound outcomes of nutritional studies. J Sci Food Agric. 2015;95:2155–8. Simple feeding trial demonstrating unequivocally that housing arrangements for experimental animals may compromise study outcomes.

    Article  PubMed  CAS  Google Scholar 

  30. Hariri N, Thibault L. High-fat diet-induced obesity in animal models. Nutr Res Rev. 2010;23:270–99.

    Article  CAS  PubMed  Google Scholar 

  31. Buettner R, Scholmerich J, Bollheimer LC. High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity. 2007;15:798–808.

    Article  CAS  PubMed  Google Scholar 

  32. Commerford SR, Pagliassotti MJ, Melby CL, Wei Y, Hill J. Inherent capacity for lipogenesis or dietary fat retention is not increased in obesity-prone rats. Am J Physiol Regul Integr Comp Physiol. 2001;280:R1680–7.

    CAS  PubMed  Google Scholar 

  33. Million M, Angelakis E, Paul M, Armougom F, Leibovici L, Raoult D. Comparative meta-analysis of the effect of Lactobacillus species on weight gain in humans and animals. Microb Pathog. 2012;53:100–18.

    Article  PubMed  Google Scholar 

  34. Santacruz A, Collado MC, Garcıa-Valdes L, Segura MT, Martın-Lagos JA, Anjos T, et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr. 2010;104:83–92.

    Article  CAS  PubMed  Google Scholar 

  35. Hu HJ, Park SJ, Jang HN, Choi MG, Park KH, Kang JH, et al. Obesity alters the microbial community profile in Korean adolescents. PLoS One. 2015;10:e0134333.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Schwiertz A, Taras D, Schafer K, Beijer S, Bos NA, Donus C, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity. 2010;18:190–5.

    Article  PubMed  Google Scholar 

  37. Kasai C, Sugimoto K, Moritani I, Tanak J, Oya Y, Inoue H, et al. Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analysed by terminal restriction fragment length polymorphism and next-generation sequencing. BMC Gastroenterol. 2015;15:100–10.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Armougom F, Henry M, Vialettes B, Raccah D, Raoult D. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and methanogens in anorexic patients. PLoS One. 2009;4:e7125.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Angelakis E, Armougom F, Amougom F, Million M, Raoult D. The relationship between gut microbiota and weight gain in humans. Future Microbiol. 2012;7:91–109.

    Article  PubMed  Google Scholar 

  40. Walters WA, Xu Z, Knight R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett. 2014;588:4223–33. Meta-analysis of a small number of studies that used comparable analytical methodologies. The analysis reveals that fecal microbiota differences between lean and obese are inconsistent across studies, indicative of a small effect size for obesity.

    Article  CAS  PubMed  Google Scholar 

  41. Balamurugan R, George G, Kabeerdoss J, Hepsiba J, Chandragunasekaran AM, Ramakrishna BS. Quantitative differences in intestinal Faecalibacterium prausnitzii in obese Indian children. Br J Nutr. 2010;103:335–8.

    Article  CAS  PubMed  Google Scholar 

  42. Nadal I, Santacruz A, Marcos A, Warnberg J, Garagorri M, Moreno LA. Shifts in clostridia, bacteroides and immunoglobulin-coating fecal bacteria associated with weight loss in obese adolescents. Int J Obes. 2009;33:758–67.

    Article  CAS  Google Scholar 

  43. Duncan SH, Belenguer A, Holtrop G, Johnstone AM, Flint HJ, Loblet GE. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol. 2007;73:1073–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Salonen A, Lahti L, Salojarvi J, Holtrop G, Korpela K, Duncan S. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J. 2014;8:2218–30.

    Article  CAS  PubMed  Google Scholar 

  45. Duncan SH, Lobley GE, Holtrop G, Ince J, Johnstone AM, Louis P, et al. Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes. 2008;32:1720–4.

    Article  CAS  Google Scholar 

  46. Brinkworth GD, Noakes M, Clifton PM, Bird AR. Comparative effects of very low-carbohydrate, high-fat and high-carbohydrate, low-fat weight-loss diets on bowel habit and faecal short-chain fatty acids and bacterial populations. Br J Nutr. 2009;101:1493–502.

    Article  CAS  PubMed  Google Scholar 

  47. Prideaux L, Kang S, Wagner J, Buckley M, Mahar JE, De Cruz P, et al. Impact of ethnicity, geography, and disease on the microbiota in health and inflammatory bowel disease. Inflamm Bowel Dis. 2013;19:2906–18.

    Article  PubMed  Google Scholar 

  48. Dominianni C, Sinha R, Goedert JJ, Pei ZH, Yang LY, Hayes RB, et al. Sex, body mass index, and dietary fiber intake influence the human gut microbiome. PLoS One. 2015;10:e0124599.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Maurice CF, Haiser HJ, Turnbaugh PJ. Xenobiotics shape the physiology and gene expression of the active gut microbiome. Cell. 2013;152:39–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Cani PD, Everard A. Keeping gut lining at bay: impact of emulsifiers. Trends Endocrinol Metab. 2015;26:273–4.

    Article  CAS  PubMed  Google Scholar 

  51. Thaiss CA, Zeevi D, Levy M, Zilverman-Shapira G, Suez J, Tengeler AC, et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell. 2014;159:514–29. Comprehensive study in mice and humans showing that gut microbiota composition and function fluctuates largely in response to daily feeding rhythms, patterns and behaviours. Disrupted circadian rhythmicity impacts the microbiota (dysbiosis) which in turn may have adverse metabolic consequences for the host.

    Article  CAS  PubMed  Google Scholar 

  52. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2224–60.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Ebbert JO, Elrashidi MY, Jensen MD. Managing overweight and obesity in adults to reduce cardiovascular disease risk. Curr Atheroscler Rep. 2014;16:445.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Rogers CJ, Prabhu KS, Vijay-Kumar M. The microbiome and obesity—an established risk for certain types of cancer. Cancer J. 2014;20(3):176–80.

    Article  CAS  PubMed  Google Scholar 

  55. Kostic AD, Gevers D, Siljander H, Vatanen T, Hyotylainen T, Hamalainen A-M, et al. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe. 2015;17:260–73.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang XY, Shen DQ, Fang ZW, Jie ZY, Qiu XM, Zhang CF, et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One. 2013;8(8):e71108.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Palmer BF, Clegg DJ. The sexual dimorphism of obesity. Mol Cell Endocinol. 2015;402:113–9.

    Article  CAS  Google Scholar 

  58. Ringel Y, Maharshak N, Ringel-Kulka T, Wolber EA, Sartor RB, Carroll IM. High throughput sequencing reveals distinct microbial populations within the mucosal and luminal niches in healthy individuals. Gut Microbes. 2015;6(3):173–81. Observational study showing that the large bowel luminal (fecal) and mucosa-associated microbiota are essentially two distinct ecosystems that differ in microbial diversity and composition.

    Article  PubMed  CAS  Google Scholar 

  59. Faith JJ, McNulty NP, Rey FE, McNulty NP, Rey FE, Gordon JI. Predicting a human gut microbiota’s response to diet in gnotobiotic mice. Science. 2011;333:101–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Zhang CH, Zhang MH, Wang SY, Han RJ, Cao YF, Hua WY. Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME J. 2010;4(2):232–41.

    Article  CAS  PubMed  Google Scholar 

  61. Backhed F, Roswall J, Peng YQ, Feng Q, Jia HJ, Kovatcheva-Datchary P, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17(5):690–703.

    Article  PubMed  CAS  Google Scholar 

  62. Pacheco AR, Barile D, Underwood MA, Mills DA. The impact of the milk glycobiome on the neonate gut microbiota. Annu Rev Anim Biosci. 2015;3:419–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Jost T, Lacroix C, Braegger C, Chassard C. Impact of human milk bacteria and oligosaccharides on neonatal gut microbiota establishment and gut health. Nutr Rev. 2015;7 3(7):426–37.

    Article  Google Scholar 

  64. Wang M, Li M, Wu S, Lebrilla CB, Chapkin RS, Ivanov I, et al. Fecal microbiota composition of breast-fed infants is correlated with human milk oligosaccharides consumed. J Pediatr Gastroenterol Nutr. 2015;60(6):825–33.

    Article  CAS  PubMed  Google Scholar 

  65. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334:105–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Bervoets L, Van Hoorenbeeck K, Kortleven I, Van Noten C, Hens N, Vael C. Differences in gut microbiota composition between obese and lean children: a cross-sectional study. Gut Pathog. 2013;5:10.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Conlon MA, Bird AR. The impact of diet and lifestyle on gut microbiota and human health. Nutrients. 2015;7(1):17–44.

    Article  PubMed Central  CAS  Google Scholar 

  68. Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze XL. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 2011;5(2):220–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Korpela K, Flint HJ, Johnstone AM, Lappi J, Poutanen K, Dewulf E. Gut microbiota signatures predict host and microbiota responses to dietary interventions in obese individuals. PLoS One. 2014;9(3):e90702.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Le Leu RK, Winter JM, Christophersen C, Young GP, Humphreys KJ, Hu Y, et al. Butyrylated starch intake can prevent red meat induced O6-methyl-2-deoxyguanosine adducts in human rectal tissue: a randomised clinical trial. Br J Nutr. 2015;114(2):220–30.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  71. Bird AR, Usher S, May B, Topping DL, Morell MK. 2012. Resistant starch—measurement, intakes and dietary targets. In: Dietary Fiber and Health. Eds Susan Cho and Nelson Almeida. pp 41–56.

  72. Payne AN, Chassard C, Lacroix C. Gut microbial adaptation to dietary consumption of fructose, artificial sweeteners and sugar alcohols: implications for host-microbe interactions contributing to obesity. Obes Rev. 2012;13(9):799–809.

    Article  CAS  PubMed  Google Scholar 

  73. Gibson GR, Probert HM, Van Loo J, Rastall RA, Roberfroid MB. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev. 2004;17(2):259–75.

    Article  CAS  PubMed  Google Scholar 

  74. Russell WR, Gratz SW, Duncan SH, Holtrop G, Ince J, Scobbie L, et al. High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am J Clin Nutr. 2011;93(5):1062–72.

    Article  CAS  PubMed  Google Scholar 

  75. Silvester KR, Bingham SA, Pollock JRA, Cummings JH, ONeill IK. Effect of meat and resistant starch on fecal excretion of apparent N-nitroso compounds and ammonia from the human large bowel. Nutr Cancer. 1997;29(1):13–23.

    Article  CAS  PubMed  Google Scholar 

  76. O’Callaghan NJ, Toden S, Bird AR, Topping DL, Fenech M, Conlon MA. Colonocyte telomere shortening is greater with dietary red meat than white meat and is attenuated by resistant starch. Clin Nutr. 2012;31:60–4.

    Article  PubMed  CAS  Google Scholar 

  77. Winter J, Nyskohus L, Young GP, Hu Y, Conlon MA, Bird AR, et al. Inhibition by resistant starch of red meat-induced promutagenic adducts in mouse colon. Cancer Prev Res. 2011;4:1920–8.

    Article  CAS  Google Scholar 

  78. Toden S, Bird AR, Topping DL, Conlon MA. Differential effects of dietary whey, casein and soya on colonic DNA damage and large bowel SCFA in rats fed diets low and high in resistant starch. Br J Nutr. 2007;97:535–43.

    Article  CAS  PubMed  Google Scholar 

  79. Maukonen J, Saarela M. Human gut microbiota: does diet matter? Proc Nutr Soc. 2015;74:23–36.

    Article  CAS  PubMed  Google Scholar 

  80. Belobrajdic DP, Bird AR. The potential role of phytochemicals in wholegrain cereals for the prevention of type-2 diabetes. Nutr J. 2013;12:62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Tuohy KM, Conterno L, Gasperotti M, Viola R. Up-regulating the human intestinal microbiome using whole plant foods, polyphenols, and/or fiber. J Agric Food Chem. 2012;60(36):8776–82.

    Article  CAS  PubMed  Google Scholar 

  82. Martin FPJ, Montoliu I, Nagy K, Moco S, Collino S, Guy P. Specific dietary preferences are linked to differing gut microbial metabolic activity in response to dark chocolate intake. J Proteome Res. 2012;11(12):6252–63.

    Article  CAS  PubMed  Google Scholar 

  83. Muir JG, Yeow EGW, Keogh J, Pizzey C, Bird AR, Sharpe K, et al. Combining wheat bran with resistant starch raised faecal butyrate and lowered phenols in humans. Am J Clin Nutr. 2004;79:1020–8.

    CAS  PubMed  Google Scholar 

  84. Bird AR, Vuaran M, Crittenden R, Hayakawa T, Playne M, Brown I, et al. Comparative effects of a high-amylose starch and a fructooligosaccharide on fecal bifidobacteria numbers and short-chain fatty acids in pigs fed Bifidobacterium animalis. Dig Dis Sci. 2009;54(5):947–54.

    Article  CAS  PubMed  Google Scholar 

  85. Baer DJ, Rumpler WV, Miles CW, Fahey GC. Dietary fiber decreases the metabolizable energy content and nutrient digestibility of mixed diets fed to humans. J Nutr. 1997;127(4):579–86.

    CAS  PubMed  Google Scholar 

  86. Thornton JR, Dryden A, Kelleher J, Losowsky MS. Super-efficient starch absorption—a risk factor for colonic neoplasia. Dig Dis Sci. 1987;32(10):1088–91.

    Article  CAS  PubMed  Google Scholar 

  87. James SL, Christophersen CT, Bird AR, Rosella O, Muir JG, Gibson PR. Abnormal fibre usage in UC in remission. Gut. 2015;64(4):562–70. Randomised controlled trial showing that the gut microbiota of patients with quiescent ulcerative colitis has a reduced capacity to ferment dietary fibres such as resistant starch and nonstarch polysaccharides.

    Article  CAS  PubMed  Google Scholar 

  88. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science. 2005;307:1915–20.

    Article  PubMed  CAS  Google Scholar 

  89. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54:2325–40.

    Article  CAS  Google Scholar 

  90. Bach Knudsen KE. Microbial degradation of whole-grain complex carbohydrates and impact on short-chain fatty acids and health. Adv Nutr. 2015;6:206–13.

    Article  PubMed  CAS  Google Scholar 

  91. Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev. 2001;81:1031–64.

    CAS  PubMed  Google Scholar 

  92. McOrist AL, Miller RB, Bird AR, Keogh JB, Noakes M, Topping DL, et al. Fecal butyrate levels vary widely among individuals but are usually increased by a diet high in resistant starch. J Nutr. 2011;141:883–9.

    Article  CAS  PubMed  Google Scholar 

  93. Rahat-Rozenbloom S, Fernandes J, Gloor GB, Wolever TMS. Evidence for greater production of colonic short-chain fatty acids in overweight than lean humans. Int J Obes. 2014;38(12):1525–31.

    Article  CAS  Google Scholar 

  94. Cox LM, Blaser MJ. Pathways in microbe-induced obesity. Cell Metab. 2013;17(6):883–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Hooper B, Spiro A, Stanner S. 30 g of fibre a day: an achievable recommendation? Nutr Bull. 2015;40:118–29.

    Article  Google Scholar 

  96. Leach JD. Evolutionary perspective on dietary intake of fibre and colorectal cancer. Eur J Clin Nutr. 2007;61:140–2.

    Article  CAS  PubMed  Google Scholar 

  97. Hill JO, Wyatt HR, Reed GW, Peters JC. Obesity and environment: where do we go from here? Science. 2003;299:854–5.

    Article  CAS  Google Scholar 

  98. Graham C, Mullen A, Whelan K. Obesity and the gastrointestinal microbiota: a review of associations and mechanisms. Nutr Rev. 2015;73(6):376–85.

    Article  PubMed  Google Scholar 

  99. Yang Y, Zhao L-G, Wu Q-J, Ma X, Xiang Y-B. Association between dietary fibre and lower risk of all-cause mortality: a meta-analysis of cohort studies. Am J Epidemiol. 2015;181(2):83–91.

    Article  PubMed  Google Scholar 

  100. Higgins JA. Resistant starch and energy balance: impact on weight loss and maintenance. Crit Rev Food Sci Nutr. 2014;54:1158–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Keenan MJ, Zhou J, Hegsted M, Pelkman C, Durham HA, Coulon DB, et al. Role of resistant starch in improving gut health, adiposity, and insulin resistance. Adv Nutr. 2015;6:198–205.

    Article  CAS  PubMed  Google Scholar 

  102. Zhou J, Martin RJ, Tulley RT, Raggio AM, Shen L, Lissy E, et al. Failure to ferment dietary resistant starch in specific mouse models of obesity results in no body fat loss. J Agric Food Chem. 2009;57(19):8844–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Belobrajdic DP, King RS, Christophersen CT, Bird AR. Dietary resistant starch dose-dependently reduces adiposity in obesity-prone and obesity–resistant male rats. Nutr Metab. 2012;9:93.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony R. Bird.

Ethics declarations

Conflict of Interest

Anthony R. Bird and Michael A. Conlon declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Diabetes and Obesity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bird, A.R., Conlon, M.A. Obesity, Diet and the Gut Microbiota. Curr Nutr Rep 4, 340–347 (2015). https://doi.org/10.1007/s13668-015-0146-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-015-0146-2

Keywords

Navigation