Skip to main content

Advertisement

Log in

Epigenetic Determinants of Weight Management: Methylation Signatures

  • Diabetes and Obesity (L Qi, Section Editor)
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Epigenetic signatures, which can sometimes be transgenerationally inherited, include DNA methylation, histone covalent modifications, or chromatin folding, as well as microRNAs and other mechanisms that can regulate gene expression without altering the underlying genomic sequence. Maternal malnutrition during perinatal periods has been involved, through fetal or developmental programming, in the susceptibility to excessive adiposity and other non-communicable chronic diseases. Epigenetic encrypts in the adipose tissue of obese subjects, which are affected by nutrition, sedentarism, and age among other factors, can be also reflected in the blood cells. Relationships between obesity and the epigenetic regulation of gene expression have been repeatedly reported, for example. It has been suggested that the obesity status may be mediated by epigenetic marks and that the response to a hypocaloric diet could be related to the methylation profiles of specific gene promoters. This review is focused on the importance of epigenetic regulation, with emphasis on DNA methylation, in the etiology and development of obesity, presenting some target epiobesogenic genes that might be used as biomarkers of weight loss success and weight regain and for preventive and personalized nutrition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Martinez JA, Navas-Carretero S, Saris WH, Astrup A. Personalized weight loss strategies-the role of macronutrient distribution. Nat Rev Endocrinol. 2014;10(12):749–60.

    Article  CAS  PubMed  Google Scholar 

  2. McAllister EJ, Dhurandhar NV, Keith SW, Aronne LJ, Barger J, Baskin M, et al. Ten putative contributors to the obesity epidemic. Crit Rev Food Sci Nutr. 2009;49(10):868–913.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Campión J, Milagro F, Martínez JA. Epigenetics and obesity. Prog Mol Biol Transl Sci. 2010;94:291–347.

    Article  PubMed  Google Scholar 

  4. Milagro FI, Campion J, Martinez JA. Handbook of epigenetics: the new molecular and medical genetics, Trygve Tollefsbol, editor. Elsevier, 2010.

  5. Allis CD, Jenuwein T, Reinberg D. Epigenetics. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2007.

    Google Scholar 

  6. Vickers MH. Early life nutrition, epigenetics and programming of later life disease. Nutrients. 2014;6(6):2165–78.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Simmons R. Epigenetics and maternal nutrition: nature v. nurture. Proc Nutr Soc. 2011;70(1):73–81.

    Article  CAS  PubMed  Google Scholar 

  8. Soubry A, Hoyo C, Jirtle RL, Murphy SK. A paternal environmental legacy: evidence for epigenetic inheritance through the male germ line. Bioessays. 2014;36(4):359–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Gabory A, Roseboom TJ, Moore T, Moore LG, Junien C. Placental contribution to the origins of sexual dimorphism in health and diseases: sex chromosomes and epigenetics. Biol Sex Differ. 2013;4(1):5.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Zheng J, Xiao X, Zhang Q, Yu M. DNA methylation: the pivotal interaction between early-life nutrition and glucose metabolism in later life. Br J Nutr. 2014;112(11):1850–7.

    Article  CAS  PubMed  Google Scholar 

  11. Junien C, Gallou-Kabani C, Vigé A, Gross MS. Nutritional epigenomics of metabolic syndrome. Med Sci (Paris). 2005 Spec No: 44–52.

  12. Barouki R, Gluckman PD, Grandjean P, Hanson M, Heindel JJ. Developmental origins of non-communicable disease: implications for research and public health. Environ Health. 2012;11:42.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518(7539):317–30. This paper demonstrates the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

    Article  PubMed Central  Google Scholar 

  14. Leung D, Jung I, Rajagopal N, Schmitt A, Selvaraj S, Lee AY, et al. Integrative analysis of haplotype-resolved epigenomes across human tissues. Nature. 2015;518(7539):350–4. This paper enhances our understanding of the mechanisms by which cis-regulatory elements control gene expression programs.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Weber M, Hellmann I, Stadler MB, Ramos L, Paabo S, Rebhan M, et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet. 2007;39(4):457–66.

    Article  CAS  PubMed  Google Scholar 

  16. Kroeze LI, van der Reijden BA, Jansen JH. 5-Hydroxymethylcytosine: an epigenetic mark frequently deregulated in cancer. Biochim Biophys Acta. 2015;1855(2):144–54.

    CAS  PubMed  Google Scholar 

  17. Schultz MD, He Y, Whitaker JW, Hariharan M, Mukamel EA, Leung D, et al. Human body epigenome maps reveal noncanonical DNA methylation variation. Nature. 2015. doi:10.1038/nature14465.

    PubMed Central  Google Scholar 

  18. Fu Y, Dominissini D, Rechavi G, He C. Gene expression regulation mediated through reversible m6A RNA methylation. Nat Rev Genet. 2014;15(5):293–306.

    Article  CAS  PubMed  Google Scholar 

  19. Wang J, Wu Z, Li D, Li N, Dindot SV, Satterfield MC, et al. Nutrition, epigenetics, and metabolic syndrome. Antioxid Redox Signal. 2012;17(2):282–301.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Qureshi IA, Mehler MF. Developing epigenetic diagnostics and therapeutics for brain disorders. Trends Mol Med. 2013;19(12):732–41.

    Article  CAS  PubMed  Google Scholar 

  21. Holoch D, Moazed D. RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet. 2015;16(2):71–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Puri V, Virbasius JV, Guilherme A, Czech MP. RNAi screens reveal novel metabolic regulators: RIP140, MAP4k4 and the lipid droplet associated fat specific protein (FSP) 27. Acta Physiol (Oxf). 2008;192(1):103–15.

    Article  CAS  Google Scholar 

  23. Nolte-’t Hoen EN, Van Rooij E, Bushell M, Zhang CY, Dashwood R, James WP, et al. The role of microRNA in nutritional control. J Intern Med. 2015. doi:10.1111/joim.12372. This paper reviews the role of intracellular and extracellular miRNAs in nutritional control of various (patho)physiological processes.

    PubMed  Google Scholar 

  24. Feng D, Lazar MA. Clocks, metabolism, and the epigenome. Mol Cell. 2012;47(2):158–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Scheen AJ, Junien C. Epigenetics, interface between environment and genes: role in complex diseases. Rev Med Liege. 2012;67(5–6):250–7.

    CAS  PubMed  Google Scholar 

  26. Youngson NA, Morris MJ. What obesity research tells us about epigenetic mechanisms. Philos Trans R Soc Lond B Biol Sci. 2013;368(1609):20110337.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Laszlo AH, Derrington IM, Brinkerhoff H, Langford KW, Nova IC, Samson JM, et al. Detection and mapping of 5-methylcytosine and 5-hydroxymethylcytosine with nanopore MspA. Proc Natl Acad Sci U S A. 2013;110(47):18904–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Mansego ML, Milagro FI, Campión J, Martínez JA. Techniques of DNA methylation analysis with nutritional applications. J Nutrigenet Nutrigenomics. 2013;6(2):83–96. A large number of methods can be used for the analysis of DNA methylation such as pyrosequencing™, primer extension or real-time PCR methods, and genome-wide DNA methylation profile from microarray or sequencing-based methods.

    Article  CAS  PubMed  Google Scholar 

  29. Ong ML, Lin X, Holbrook JD. Measuring epigenetics as the mediator of gene/environment interactions in DOHaD. J Dev Orig Health Dis. 2015;6(1):10–6.

    Article  CAS  PubMed  Google Scholar 

  30. Kubota T, Miyake K, Hariya N, Mochizuki K. Understanding the epigenetics of neurodevelopmental disorders and DOHaD. J Dev Orig Health Dis. 2015;6(2):96–104.

    Article  CAS  PubMed  Google Scholar 

  31. Lukaszewski MA, Eberlé D, Vieau D, Breton C. Nutritional manipulations in the perinatal period program adipose tissue in offspring. Am J Physiol Endocrinol Metab. 2013;305(10):E1195–207.

    Article  CAS  PubMed  Google Scholar 

  32. Gluckman PD, Hanson MA, Low FM. The role of developmental plasticity and epigenetics in human health. Birth Defects Res C Embryo Today. 2011;93(1):12–8.

    Article  CAS  PubMed  Google Scholar 

  33. Rasmussen F, Johansson M. The relation of weight, length and ponderal index at birth to body mass index and overweight among 18-year-old males in Sweden. Eur J Epidemiol. 1998;14:373–80.

    Article  CAS  PubMed  Google Scholar 

  34. Adamo KB, Ferraro ZM, Brett KE. Can we modify the intrauterine environment to halt the intergenerational cycle of obesity? Int J Environ Res Public Health. 2012;9(4):1263–307.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Ganu RS, Harris RA, Collins K, Aagaard KM. Maternal diet: a modulator for epigenomic regulation during development in nonhuman primates and humans. Int J Obes Suppl. 2012;2 Suppl 2:S14–8.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Ruemmele FM, Garnier-Lengliné H. Why are genetics important for nutrition? Lessons from epigenetic research. Ann Nutr Metab. 2012;60 Suppl 3:38–43.

    Article  CAS  PubMed  Google Scholar 

  37. Waterland RA, Travisano M, Tahiliani KG, Rached MT, Mirza S. Methyl donor supplementation prevents transgenerational amplification of obesity. Int J Obes (Lond). 2008;32(9):1373–9.

    Article  CAS  Google Scholar 

  38. Cordero P, Milagro FI, Campion J, Martinez JA. Maternal methyl donors supplementation during lactation prevents the hyperhomocysteinemia induced by a high-fat-sucrose intake by dams. Int J Mol Sci. 2013;14(12):24422–37.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Waterland RA. Early environmental effects on epigenetic regulation in humans. Epigenetics. 2009;4(8):523–5.

    Article  PubMed  Google Scholar 

  40. Szeto IM, Das PJ, Aziz A, Anderson GH. Multivitamin supplementation of Wistar rats during pregnancy accelerates the development of obesity in offspring fed an obesogenic diet. Int J Obes (Lond). 2009;33(3):364–72.

    Article  CAS  Google Scholar 

  41. Yajnik CS, Deshpande SS, Jackson AA, Refsum H, Rao S, Fisher DJ, et al. Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: the Pune Maternal Nutrition Study. Diabetologia. 2008;51(1):29–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Zhou D, Pan YX. Pathophysiological basis for compromised health beyond generations: role of maternal high-fat diet and low-grade chronic inflammation. J Nutr Biochem. 2015;26(1):1–8.

    Article  PubMed  Google Scholar 

  43. Levin BE, Dunn-Meynell AA. Maternal obesity alters adiposity and monoamine function in genetically predisposed offspring. Am J Physiol Regul Integr Comp Physiol. 2002;283(5):R1087–93.

    Article  PubMed  Google Scholar 

  44. Ojha S, Saroha V, Symonds ME, Budge H. Excess nutrient supply in early life and its later metabolic consequences. Clin Exp Pharmacol Physiol. 2013;40(11):817–23.

    Article  CAS  PubMed  Google Scholar 

  45. Heerwagen MJ, Miller MR, Barbour LA, Friedman JE. Maternal obesity and fetal metabolic programming: a fertile epigenetic soil. Am J Physiol Regul Integr Comp Physiol. 2010;299(3):R711–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Khalyfa A, Carreras A, Hakim F, Cunningham JM, Wang Y, Gozal D. Effects of late gestational high-fat diet on body weight, metabolic regulation and adipokine expression in offspring. Int J Obes (Lond). 2013;37(11):1481–9.

    Article  CAS  Google Scholar 

  47. El Hajj N, Schneider E, Lehnen H, Haaf T. Epigenetics and life-long consequences of an adverse nutritional and diabetic intrauterine environment. Reproduction. 2014;148(6):R111–20.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Benyshek DC. The “early life” origins of obesity-related health disorders: new discoveries regarding the intergenerational transmission of developmentally programmed traits in the global cardiometabolic health crisis. Am J Phys Anthropol. 2013;152 Suppl 57:79–93.

    Article  PubMed  Google Scholar 

  49. Plagemann A. Perinatal nutrition and hormone-dependent programming of food intake. Horm Res. 2006;65 Suppl 3:83–9.

    Article  CAS  PubMed  Google Scholar 

  50. Lesage J, Sebaai N, Leonhardt M, Dutriez-Casteloot I, Breton C, Deloof S, et al. Perinatal maternal undernutrition programs the offspring hypothalamo-pituitary-adrenal (HPA) axis. Stress. 2006;9(4):183–98.

    Article  CAS  PubMed  Google Scholar 

  51. Wattez JS, Delahaye F, Lukaszewski MA, Risold PY, Eberlé D, Vieau D, et al. Perinatal nutrition programs the hypothalamic melanocortin system in offspring. Horm Metab Res. 2013;45(13):980–90.

    Article  CAS  PubMed  Google Scholar 

  52. Lesseur C, Armstrong DA, Paquette AG, Koestler DC, Padbury JF, Marsit CJ. Tissue-specific leptin promoter DNA methylation is associated with maternal and infant perinatal factors. Mol Cell Endocrinol. 2013;381(1–2):160–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Martínez JA, Cordero P, Campión J, Milagro FI. Interplay of early-life nutritional programming on obesity, inflammation and epigenetic outcomes. Proc Nutr Soc. 2012;71(2):276–83.

    Article  PubMed  Google Scholar 

  54. Saffery R. Epigenetic change as the major mediator of fetal programming in humans: are we there yet? Ann Nutr Metab. 2014;64(3–4):203–7.

    Article  CAS  PubMed  Google Scholar 

  55. Tarrade A, Panchenko P, Junien C, Gabory A. Placental contribution to nutritional programming of health and diseases: epigenetics and sexual dimorphism. J Exp Biol. 2015;218(Pt 1):50–8.

    Article  PubMed  Google Scholar 

  56. Milagro FI, Mansego ML, De Miguel C, Martínez JA. Dietary factors, epigenetic modifications and obesity outcomes: progresses and perspectives. Mol Aspects Med. 2013;34(4):782–812. Complex interactions among food components and histone modifications, DNA methylation, non-coding RNA expression and chromatin remodeling factors lead to a dynamic regulation of gene expression that controls the cellular phenotype.

    Article  CAS  PubMed  Google Scholar 

  57. Goni L, Milagro FI, Cuervo M, Martínez JA. Single-nucleotide polymorphisms and DNA methylation markers associated with central obesity and regulation of body weight. Nutr Rev. 2014;72(11):673–90. The aims of this review are to identify the single-nucleotide polymorphisms related to central obesity and to summarize the main findings on DNA methylation and obesity.

    Article  PubMed  Google Scholar 

  58. Campion J, Milagro FI, Martinez JA. Individuality and epigenetics in obesity. Obes Rev. 2009;10(4):383–92.

    Article  CAS  PubMed  Google Scholar 

  59. Marques-Rocha JL, Samblas M, Milagro FI, Bressan J, Martínez JA, Marti A. Non-coding RNAs, cytokines and inflammation-related diseases. FASEB J. 2015;29(9):3595–611.

  60. Milagro FI, Miranda J, Portillo MP, Fernandez-Quintela A, Campión J, Martínez JA. High-throughput sequencing of microRNAs in peripheral blood mononuclear cells: identification of potential weight loss biomarkers. PLoS ONE. 2013;8(1):e54319. This research addresses the use of high-throughput sequencing technologies in the search for miRNA expression biomarkers in obesity. Basal expression of mir-935 and mir-4772, could be prognostic biomarkers and may forecast the response to a hypocaloric diet.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Ali O, Cerjak D, Kent Jr JW, James R, Blangero J, Carless MA, et al. An epigenetic map of age-associated autosomal loci in northern European families at high risk for the metabolic syndrome. Clin Epigenetics. 2015;7(1):12.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Drummond EM, Gibney ER. Epigenetic regulation in obesity. Curr Opin Clin Nutr Metab Care. 2013;16(4):392–7.

    CAS  PubMed  Google Scholar 

  63. Berdasco M, Esteller M. Genetic syndromes caused by mutations in epigenetic genes. Hum Genet. 2013;132(4):359–83.

    Article  CAS  PubMed  Google Scholar 

  64. Okamura M, Inagaki T, Tanaka T, Sakai J. Role of histone methylation and demethylation in adipogenesis and obesity. Organogenesis. 2010;6(1):24–32.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Abete I, Navas-Carretero S, Marti A, Martinez JA. Nutrigenetics and nutrigenomics of caloric restriction. Prog Mol Biol Transl Sci. 2012;108:323–46.

    Article  CAS  PubMed  Google Scholar 

  66. Martin SL, Hardy TM, Tollefsbol TO. Medicinal chemistry of the epigenetic diet and caloric restriction. Curr Med Chem. 2013;20(32):4050–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Lomba A, Martínez JA, García-Díaz DF, Paternain L, Marti A, Campión J, et al. Weight gain induced by an isocaloric pair-fed high fat diet: a nutriepigenetic study on FASN and NDUFB6 gene promoters. Mol Genet Metab. 2010;101(2–3):273–8.

    Article  CAS  PubMed  Google Scholar 

  68. Uriarte G, Paternain L, Milagro FI, Martínez JA, Campion J. Shifting to a control diet after a high-fat, high-sucrose diet intake induces epigenetic changes in retroperitoneal adipocytes of Wistar rats. J Physiol Biochem. 2013;69(3):601–11.

    Article  CAS  PubMed  Google Scholar 

  69. Cordero P, Campion J, Milagro FI, Martinez JA. Transcriptomic and epigenetic changes in early liver steatosis associated to obesity: effect of dietary methyl donor supplementation. Mol Genet Metab. 2013;110(3):388–95.

    Article  CAS  PubMed  Google Scholar 

  70. Cordero P, Gomez-Uriz AM, Campion J, Milagro FI, Martinez JA. Dietary supplementation with methyl donors reduces fatty liver and modifies the fatty acid synthase DNA methylation profile in rats fed an obesogenic diet. Genes Nutr. 2013;8(1):105–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Boqué N, de la Iglesia R, de la Garza AL, Milagro FI, Olivares M, Bañuelos O, et al. Prevention of diet-induced obesity by apple polyphenols in Wistar rats through regulation of adipocyte gene expression and DNA methylation patterns. Mol Nutr Food Res. 2013;57(8):1473–8.

    Article  PubMed  Google Scholar 

  72. Paternain L, Batlle MA, De la Garza AL, Milagro FI, Martínez JA, Campión J. Transcriptomic and epigenetic changes in the hypothalamus are involved in an increased susceptibility to a high-fat-sucrose diet in prenatally stressed female rats. Neuroendocrinology. 2012;96(3):249–60.

    Article  CAS  PubMed  Google Scholar 

  73. Milagro FI, Gómez-Abellán P, Campión J, Martínez JA, Ordovás JM, et al. CLOCK, PER2 and BMAL1 DNA methylation: association with obesity and metabolic syndrome characteristics and monounsaturated fat intake. Chronobiol Int. 2012;29(9):1180–94.

    Article  CAS  PubMed  Google Scholar 

  74. Hermsdorff HH, Mansego ML, Campión J, Milagro FI, Zulet MA, Martínez JA. TNF-alpha promoter methylation in peripheral white blood cells: relationship with circulating TNFα, truncal fat and n-6 PUFA intake in young women. Cytokine. 2013;64(1):265–71.

    Article  CAS  PubMed  Google Scholar 

  75. do Amaral CL, Milagro FI, Curi R, Martínez JA. DNA methylation pattern in overweight women under an energy-restricted diet supplemented with fish oil. Biomed Res Int. 2014;2014:675021.

  76. Gómez-Úriz AM, Milagro FI, Mansego ML, Cordero P, Abete I, De Arce A, et al. Obesity and ischemic stroke modulate the methylation levels of KCNQ1 in white blood cells. Hum Mol Genet. 2015;24(5):1432–40.

    Article  PubMed  Google Scholar 

  77. Gómez-Úriz AM, Goyenechea E, Campión J, de Arce A, Martinez MT, Puchau B, et al. Epigenetic patterns of two gene promoters (TNF-α and PON) in stroke considering obesity condition and dietary intake. J Physiol Biochem. 2014;70(2):603–14.

    Article  PubMed  Google Scholar 

  78. Campion J, Milagro FI, Goyenechea E, Martinez JA. TNF-alpha promoter methylation as a predictive biomarker for weight-loss response. Obesity (Silver Spring). 2009;17(6):1293–7.

    CAS  Google Scholar 

  79. Cordero P, Campion J, Milagro FI, Goyenechea E, Steemburgo T, Javierre BM, et al. Leptin and TNF-alpha promoter methylation levels measured by MSP could predict the response to a low-calorie diet. J Physiol Biochem. 2011;67(3):463–70.

    Article  CAS  PubMed  Google Scholar 

  80. Dahlman I, Sinha I, Gao H, Brodin D, Thorell A, Rydén M, et al. The fat cell epigenetic signature in post-obese women is characterized by global hypomethylation and differential DNA methylation of adipogenesis genes. Int J Obes (Lond). 2015. doi:10.1038/ijo.2015.31. Global CpG hypomethylation and over-representation of differentially methylated DNA sites in adipogenesis genes may contribute to adipose hyperplasia in post-obese women.

    Google Scholar 

  81. Perez-Cornago A, Mansego ML, Zulet MA, Martinez JA. DNA hypermethylation of the serotonin receptor type-2A gene is associated with a worse response to a weight loss intervention in subjects with metabolic syndrome. Nutrients. 2014;6(6):2387–403.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Lopez-Legarrea P, Mansego ML, Zulet MA, Martinez JA. SERPINE1, PAI-1 protein coding gene, methylation levels and epigenetic relationships with adiposity changes in obese subjects with metabolic syndrome features under dietary restriction. J Clin Biochem Nutr. 2013;53(3):139–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Milagro FI, Campión J, Cordero P, Goyenechea E, Gómez-Uriz AM, Abete I, et al. A dual epigenomic approach for the search of obesity biomarkers: DNA methylation in relation to diet-induced weight loss. FASEB J. 2011;25(4):1378–89.

    Article  CAS  PubMed  Google Scholar 

  84. Moleres A, Campión J, Milagro FI, Marcos A, Campoy C, Garagorri JM, et al. Differential DNA methylation patterns between high and low responders to a weight loss intervention in overweight or obese adolescents: the EVASYON study. FASEB J. 2013;27(6):2504–12. This article identified 5 DNA regions that are differentially methylated depending on weight loss response. These methylation changes may help to better understand the weight loss response in obese subjects.

    Article  CAS  PubMed  Google Scholar 

  85. Crujeiras AB, Campion J, Díaz-Lagares A, Milagro FI, Goyenechea E, Abete I, et al. Association of weight regain with specific methylation levels in the NPY and POMC promoters in leukocytes of obese men: a translational study. Regul Pept. 2013;186:1–6.

    Article  CAS  PubMed  Google Scholar 

  86. Lokk K, Modhukur V, Rajashekar B, Märtens K, Mägi R, Kolde R, et al. DNA methylome profiling of human tissues identifies global and tissue-specific methylation patterns. Genome Biol. 2014;15(4):r54. doi:10.1186/gb-2014-15-4-r54.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Government of Spain (MINECO, ref. AGL2013-45554-R), ISCII (CIBERobn and RETIC) and IdiSNA for financial support.

Compliance with Ethics Guidelines

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human and animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Martinez.

Additional information

This article is part of the Topical Collection on Diabetes and Obesity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milagro, F.I., Riezu-Boj, J.I. & Martinez, J.A. Epigenetic Determinants of Weight Management: Methylation Signatures. Curr Nutr Rep 4, 330–339 (2015). https://doi.org/10.1007/s13668-015-0140-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-015-0140-8

Keywords

Navigation