Skip to main content
Log in

Synthesis and Mechanism of Formation of Non-equilibrium Ag–Ni Nanotubes

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

1D material systems such as Ag–Ni, Ag–Co, Ag–Fe nanowires or nanotubes have tremendous potential for making devices that require the coexistence of electrically conducting and magnetic phases and interfaces. The realization of such microstructures is very challenging essentially due to their high positive mixing enthalpies which makes it difficult to achieve unique non-equilibrium microstructures. In the present exploration, silver–nickel nanotubes were synthesized by adopting the electrodeposition technique. Detailed microstructural characterization of the nanotubes was carried out by using electron microscopy technique. The transmission electron microscopic examinations revealed that the microstructure of the nanotube consisted of nearly spherical, Ag–Ni nanoparticles encapsulated in a Ni-rich amorphous matrix. Ag–Ni nanoparticles exhibited two types of structures. The small-sized particles had single-phase crystal structure, whereas large-sized particles exhibited multiple twinned structure. Mechanism of formation of the nanotube involved the nucleation and subsequent growth of Ag–Ni nanoparticles inside the alumina template. Owing to the twinned structure, few nanoparticles grow larger and decomposed into Ag-rich and Ni-rich clusters that eventually matured to the nanotube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K. Ramachandran, K. Justice Babu, K. Ramachandran, K. Justice Babu, Ni-Co bimetal nanowires filled multiwalled carbon nanotubes for the highly sensitive and selective non-enzymatic glucose sensor applications. Sci. Rep. 6, 36583 (2016). https://doi.org/10.1038/srep36583

    Article  CAS  Google Scholar 

  2. L. Dimesso, G. Miehe, H. Fuess, H. Hahn, L. Dimesso, G. Miehe, H. Fuess, H. Hahn, Preparation of nanostructured granular Ag–Co and Ag–Fe alloys by gas flow condensation technique. J. Magn. Magn. Mater. 191, 162–168 (1999). https://doi.org/10.1016/S0304-8853(98)00326-6

    Article  CAS  Google Scholar 

  3. C.-C. Lee, D.-H. Chen, C.-C. Lee, D.-H. Chen, Large-scale synthesis of Ni–Ag core–shell nanoparticles with magnetic, optical and anti-oxidation properties. Nanotechnology. 17, 3094 (2006). https://doi.org/10.1088/0957-4484/17/13/002

    Article  CAS  Google Scholar 

  4. H. Guo, Y. Chen, X. Chen, R. Wen, G.-H. Yue, D.-L. Peng, H. Guo, Y. Chen, X. Chen, R. Wen, G.-H. Yue, D.-L. Peng, Facile synthesis of near-monodisperse Ag@ Ni core–shell nanoparticles and their application for catalytic generation of hydrogen. Nanotechnology. 22, 195604 (2011). https://doi.org/10.1088/0957-4484/22/19/195604

    Article  CAS  Google Scholar 

  5. S. Xu, Z.L. Wang, S. Xu, Z.L. Wang, One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res. 4, 1013–1098 (2011). https://doi.org/10.1007/s12274-011-0160-7

    Article  CAS  Google Scholar 

  6. R.K. Rai, C. Srivastava, R.K. Rai, C. Srivastava, Nonequilibrium microstructures for Ag–Ni nanowires. Microsc. Microanal. 21, 491–497 (2015). https://doi.org/10.1017/S1431927615000069

    Article  CAS  Google Scholar 

  7. C. Srivastava, R.K. Rai, C. Srivastava, R.K. Rai, Transmission electron microscopy study of Ni-rich, Ag–Ni nanowires. Chem. Phys. Lett. 575, 91–96 (2013). https://doi.org/10.1016/j.cplett.2013.05.011

    Article  CAS  Google Scholar 

  8. M. Singleton, P. Nash, M. Singleton, P. Nash, The Ag–Ni (Silver–Nickel) system. J. Phase Equilibria. 8, 119–121 (1987). https://doi.org/10.1007/BF02873194

    Article  CAS  Google Scholar 

  9. S.V. Aert, K.J. Batenburg, M.D. Rossell, R. Erni, G.V. Tendeloo, S.V. Aert, K.J. Batenburg, M.D. Rossell, R. Erni, G.V. Tendeloo, Three-dimensional atomic imaging of crystalline nanoparticles. Nature. 470, 374–377 (2011). https://doi.org/10.1038/nature09741

    Article  CAS  Google Scholar 

  10. G. Radnóczi, E. Bokanyi, Z. Erdélyi, F. Misják, G. Radnóczi, E. Bokanyi, Z. Erdélyi, F. Misják, Size dependent spinodal decomposition in Cu-Ag nanoparticles. J. Actamat. 123, 82–89 (2017). https://doi.org/10.1016/j.actamat.2016.10.036

    Article  CAS  Google Scholar 

  11. C. Srivastava, S. Chithra, K.D. Malviya, S.K. Sinha, K. Chattopadhyay, C. Srivastava, S. Chithra, K.D. Malviya, S.K. Sinha, K. Chattopadhyay, Size dependent microstructure for Ag–Ni nanoparticles. Acta Mater. 59, 6501–6509 (2011). https://doi.org/10.1016/j.actamat.2011.07.022

    Article  CAS  Google Scholar 

  12. C. Srivastava, C. Srivastava, Phase separation by nanoparticle splitting. Mater. Lett. 70, 122–124 (2012). https://doi.org/10.1016/j.matlet.2011.11.079

    Article  CAS  Google Scholar 

  13. H. Hofmeister, H. Hofmeister, Forty years study of fivefold twinned structures in small particles and thin films. Cryst. Res. Technol. 33, 3–25 (1998). https://doi.org/10.1002/(SICI)1521-4079(1998)33:1%3c3::AID-CRAT3%3e3.0.CO;2-3

    Article  CAS  Google Scholar 

  14. V.V. Volkov, G. Van Tendeloo, G.A. Tsirkov, N.V. Cherkashina, M.N. Vargaftik, I.I. Moiseev, V.M. Novotortsev, A.V. Kvit, A.L. Chuvilin, V.V. Volkov, G. Van Tendeloo, G.A. Tsirkov, N.V. Cherkashina, M.N. Vargaftik, I.I. Moiseev, V.M. Novotortsev, A.V. Kvit, A.L. Chuvilin, Long-and short-distance ordering of the metal cores of giant Pd clusters. J. Cryst. Growth. 163, 377–387 (1996). https://doi.org/10.1016/0022-0248(95)01008-4

    Article  CAS  Google Scholar 

  15. G. Radnóczi, E. Bokanyi, Z. Erdélyi, F. Misják, G. Radnóczi, E. Bokanyi, Z. Erdélyi, F. Misják, Size dependent spinodal decomposition in Cu-Ag nanoparticles. Acta Mater. 123, 82–89 (2017). https://doi.org/10.1016/j.actamat.2016.10.036

    Article  CAS  Google Scholar 

  16. T.P. Martin, T. Bergmann, H. Göhlich, T. Lange, T.P. Martin, T. Bergmann, H. Göhlich, T. Lange, Evidence for icosahedral shell structure in large magnesium clusters. Chem. Phys. Lett. 176, 343–347 (1991)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding received from the SERB Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kumar Rai.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rai, R.K., Srivastava, C. Synthesis and Mechanism of Formation of Non-equilibrium Ag–Ni Nanotubes. Metallogr. Microstruct. Anal. 10, 86–95 (2021). https://doi.org/10.1007/s13632-021-00713-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-021-00713-1

Keywords

Navigation