Synthesis and Mechanism of Formation of Non-equilibrium Ag–Ni Nanotubes

Abstract

1D material systems such as Ag–Ni, Ag–Co, Ag–Fe nanowires or nanotubes have tremendous potential for making devices that require the coexistence of electrically conducting and magnetic phases and interfaces. The realization of such microstructures is very challenging essentially due to their high positive mixing enthalpies which makes it difficult to achieve unique non-equilibrium microstructures. In the present exploration, silver–nickel nanotubes were synthesized by adopting the electrodeposition technique. Detailed microstructural characterization of the nanotubes was carried out by using electron microscopy technique. The transmission electron microscopic examinations revealed that the microstructure of the nanotube consisted of nearly spherical, Ag–Ni nanoparticles encapsulated in a Ni-rich amorphous matrix. Ag–Ni nanoparticles exhibited two types of structures. The small-sized particles had single-phase crystal structure, whereas large-sized particles exhibited multiple twinned structure. Mechanism of formation of the nanotube involved the nucleation and subsequent growth of Ag–Ni nanoparticles inside the alumina template. Owing to the twinned structure, few nanoparticles grow larger and decomposed into Ag-rich and Ni-rich clusters that eventually matured to the nanotube.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    K. Ramachandran, K. Justice Babu, K. Ramachandran, K. Justice Babu, Ni-Co bimetal nanowires filled multiwalled carbon nanotubes for the highly sensitive and selective non-enzymatic glucose sensor applications. Sci. Rep. 6, 36583 (2016). https://doi.org/10.1038/srep36583

    CAS  Article  Google Scholar 

  2. 2.

    L. Dimesso, G. Miehe, H. Fuess, H. Hahn, L. Dimesso, G. Miehe, H. Fuess, H. Hahn, Preparation of nanostructured granular Ag–Co and Ag–Fe alloys by gas flow condensation technique. J. Magn. Magn. Mater. 191, 162–168 (1999). https://doi.org/10.1016/S0304-8853(98)00326-6

    CAS  Article  Google Scholar 

  3. 3.

    C.-C. Lee, D.-H. Chen, C.-C. Lee, D.-H. Chen, Large-scale synthesis of Ni–Ag core–shell nanoparticles with magnetic, optical and anti-oxidation properties. Nanotechnology. 17, 3094 (2006). https://doi.org/10.1088/0957-4484/17/13/002

    CAS  Article  Google Scholar 

  4. 4.

    H. Guo, Y. Chen, X. Chen, R. Wen, G.-H. Yue, D.-L. Peng, H. Guo, Y. Chen, X. Chen, R. Wen, G.-H. Yue, D.-L. Peng, Facile synthesis of near-monodisperse Ag@ Ni core–shell nanoparticles and their application for catalytic generation of hydrogen. Nanotechnology. 22, 195604 (2011). https://doi.org/10.1088/0957-4484/22/19/195604

    CAS  Article  Google Scholar 

  5. 5.

    S. Xu, Z.L. Wang, S. Xu, Z.L. Wang, One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res. 4, 1013–1098 (2011). https://doi.org/10.1007/s12274-011-0160-7

    CAS  Article  Google Scholar 

  6. 6.

    R.K. Rai, C. Srivastava, R.K. Rai, C. Srivastava, Nonequilibrium microstructures for Ag–Ni nanowires. Microsc. Microanal. 21, 491–497 (2015). https://doi.org/10.1017/S1431927615000069

    CAS  Article  Google Scholar 

  7. 7.

    C. Srivastava, R.K. Rai, C. Srivastava, R.K. Rai, Transmission electron microscopy study of Ni-rich, Ag–Ni nanowires. Chem. Phys. Lett. 575, 91–96 (2013). https://doi.org/10.1016/j.cplett.2013.05.011

    CAS  Article  Google Scholar 

  8. 8.

    M. Singleton, P. Nash, M. Singleton, P. Nash, The Ag–Ni (Silver–Nickel) system. J. Phase Equilibria. 8, 119–121 (1987). https://doi.org/10.1007/BF02873194

    CAS  Article  Google Scholar 

  9. 9.

    S.V. Aert, K.J. Batenburg, M.D. Rossell, R. Erni, G.V. Tendeloo, S.V. Aert, K.J. Batenburg, M.D. Rossell, R. Erni, G.V. Tendeloo, Three-dimensional atomic imaging of crystalline nanoparticles. Nature. 470, 374–377 (2011). https://doi.org/10.1038/nature09741

    CAS  Article  Google Scholar 

  10. 10.

    G. Radnóczi, E. Bokanyi, Z. Erdélyi, F. Misják, G. Radnóczi, E. Bokanyi, Z. Erdélyi, F. Misják, Size dependent spinodal decomposition in Cu-Ag nanoparticles. J. Actamat. 123, 82–89 (2017). https://doi.org/10.1016/j.actamat.2016.10.036

    CAS  Article  Google Scholar 

  11. 11.

    C. Srivastava, S. Chithra, K.D. Malviya, S.K. Sinha, K. Chattopadhyay, C. Srivastava, S. Chithra, K.D. Malviya, S.K. Sinha, K. Chattopadhyay, Size dependent microstructure for Ag–Ni nanoparticles. Acta Mater. 59, 6501–6509 (2011). https://doi.org/10.1016/j.actamat.2011.07.022

    CAS  Article  Google Scholar 

  12. 12.

    C. Srivastava, C. Srivastava, Phase separation by nanoparticle splitting. Mater. Lett. 70, 122–124 (2012). https://doi.org/10.1016/j.matlet.2011.11.079

    CAS  Article  Google Scholar 

  13. 13.

    H. Hofmeister, H. Hofmeister, Forty years study of fivefold twinned structures in small particles and thin films. Cryst. Res. Technol. 33, 3–25 (1998). https://doi.org/10.1002/(SICI)1521-4079(1998)33:1%3c3::AID-CRAT3%3e3.0.CO;2-3

    CAS  Article  Google Scholar 

  14. 14.

    V.V. Volkov, G. Van Tendeloo, G.A. Tsirkov, N.V. Cherkashina, M.N. Vargaftik, I.I. Moiseev, V.M. Novotortsev, A.V. Kvit, A.L. Chuvilin, V.V. Volkov, G. Van Tendeloo, G.A. Tsirkov, N.V. Cherkashina, M.N. Vargaftik, I.I. Moiseev, V.M. Novotortsev, A.V. Kvit, A.L. Chuvilin, Long-and short-distance ordering of the metal cores of giant Pd clusters. J. Cryst. Growth. 163, 377–387 (1996). https://doi.org/10.1016/0022-0248(95)01008-4

    CAS  Article  Google Scholar 

  15. 15.

    G. Radnóczi, E. Bokanyi, Z. Erdélyi, F. Misják, G. Radnóczi, E. Bokanyi, Z. Erdélyi, F. Misják, Size dependent spinodal decomposition in Cu-Ag nanoparticles. Acta Mater. 123, 82–89 (2017). https://doi.org/10.1016/j.actamat.2016.10.036

    CAS  Article  Google Scholar 

  16. 16.

    T.P. Martin, T. Bergmann, H. Göhlich, T. Lange, T.P. Martin, T. Bergmann, H. Göhlich, T. Lange, Evidence for icosahedral shell structure in large magnesium clusters. Chem. Phys. Lett. 176, 343–347 (1991)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding received from the SERB Govt. of India.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kumar Rai.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rai, R.K., Srivastava, C. Synthesis and Mechanism of Formation of Non-equilibrium Ag–Ni Nanotubes. Metallogr. Microstruct. Anal. (2021). https://doi.org/10.1007/s13632-021-00713-1

Download citation

Keywords

  • Nanotube
  • Electrodeposition
  • Electron microscopy