Skip to main content

Advertisement

Log in

Effects of Thermo-mechanical Process Parameters on Microstructure and Crystallographic Texture of High Ni–Mo Ultrahigh Strength Steel

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

A novel low-carbon micro-alloyed steel has been developed with ultrahigh strength (UTS ~ 1700 MPa), satisfactory ductility (total elongation ~ 13%) and impact toughness (25 J/cm2 at − 40 °C) for light-weight applications in automobile, aerospace and defence sectors. The effect of finish rolling temperatures (850–750 °C) and cooling rate (air cooling versus water quenching) on the evolution of microstructure and crystallographic texture and finally on the mechanical properties of thermo-mechanically controlled processed steel has been studied. A refinement in mixed microstructure comprised of granular/lower bainite and lath/plate martensite and an intensification of Goss and rotated Goss texture components were found with the decrease in finish rolling temperature and increase in cooling rate. Interaction of fine-scale carbide/carbonitride precipitates of Nb and Ti with the dislocation substructure present within bainite and martensite contributed significant precipitation strengthening to the steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K. Zhang, M. Zhang, Z. Guo, N. Chen, Y. Rong, A new effect of retained austenite on ductility enhancement in high-strength quenching–partitioning–tempering martensitic steel. Mater. Sci. Eng. A 528, 8486–8491 (2011)

    Article  Google Scholar 

  2. H.K.D.H. Bhadeshia, R. Honeycombe, Steels: Microstructure and Properties, 3rd edn. (Elsevier, Amsterdam, 2006)

    Google Scholar 

  3. T. Gladman, The Physical Metallurgy of Microalloyed Steels (Institute of Materials, London, 1997)

    Google Scholar 

  4. M. De Meyer, D. Vanderschueren, B.C. De Cooman, The influence of the substitution of Si by Al on the properties of cold rolled C–Mn–Si TRIP steels. ISIJ Int. 39(8), 813–822 (1999)

    Article  Google Scholar 

  5. K.I. Sugimoto, M. Kobayashi, S.I. Hashimoto, Ductility and strain-induced transformation in a high-strength transformation-induced plasticity-aided dual-phase steel. Metall. Trans. A 23(11), 3085–3091 (1992)

    Article  Google Scholar 

  6. T.V. Philip, T.J. McCaffy, Ultrahigh Strength Steel, Metals Handbook, 10th edn. (ASM International, New York, 1990), pp. 431–448

    Google Scholar 

  7. R. Kuziak, R. Kawalla, S. Waengler, Advanced high strength steels for automotive industry. Arch. Civ. Mech. Eng. 8(2), 103–117 (2008)

    Article  Google Scholar 

  8. D. K. Matlock, J. G. Speer, Third generation of AHSS: microstructure design concepts, in Microstructure and Texture in Steels (Springer, London, 2009), pp. 185–205

  9. M. Zhao, K. Yang, Y. Shan, The effects of thermo-mechanical control process on microstructures and mechanical properties of a commercial pipeline steel. Mater. Sci. Eng. A 335, 14–20 (2002)

    Article  Google Scholar 

  10. S. Mandal, N.K. Tewary, S.K. Ghosh, D. Chakrabarti, S. Chatterjee, Thermo-mechanically controlled processed ultrahigh strength steel: microstructure, texture and mechanical properties. Mater. Sci. Eng. A 663, 126–140 (2016)

    Article  Google Scholar 

  11. G. Mandal, C. Roy, S.K. Ghosh, S. Chatterjee, Structure-property relationship in a 2 GPa grade micro-alloyed ultrahigh strength steel. J. Alloys Compd. 705, 817–827 (2017)

    Article  Google Scholar 

  12. M.C. Zhao, Y.Y. Shan, J.B. Qu, F.R. Xiao, Y. Zhong, K. Yang, Acicular ferrite formation in a pipeline steel with thermo-mechanical control process. Acta Metall. Sin. 37(8), 820–824 (2001)

    Google Scholar 

  13. G.J. Baczynski, J.J. Jonas, L.E. Collins, The influence of rolling practice on notch toughness and texture development in high-strength line pipe. Metall. Mater. Trans. A 30, 3045–3054 (1999)

    Article  Google Scholar 

  14. B. Faucher, B. Dogan, Evaluation of the fracture toughness of hot-rolled low-alloy Ti–V plate steel. Metall. Trans. A 19, 505–516 (1988)

    Article  Google Scholar 

  15. J.R. Davis, Alloying: Understanding the Basics, ASM International, Materials Park, Ohio-44073-0002, 193-209(2001)

  16. M. Calcagnotto, D. Ponge, D. Raabe, On the effect of manganese on grain size stability and hardenability in ultrafine-grained ferrite/martensite dual-phase steels. Metall. Mater. Trans. A 43, 37–46 (2012)

    Article  Google Scholar 

  17. J.A. Omotoyinbo, O.O. Oluwole, Effect of thermomechanical working on the strengthening of some austenitic steel grades. Mater. Des. 30, 335–339 (2009)

    Article  Google Scholar 

  18. S. Zhang, P. Wang, D. Li, Y. Li, Investigation of the evolution of retained austenite in Fe–13%Cr–4%Ni martensitic stainless steel during intercritical tempering. Mater. Des. 84, 385–394 (2015)

    Article  Google Scholar 

  19. J. Kong, C. Xie, Effect of molybdenum on continuous cooling bainite transformation of low-carbon microalloyed steel. Mater. Des. 27, 1169–1173 (2006)

    Article  Google Scholar 

  20. R.D.K. Misra, H. Nathani, J.E. Hartmann, F. Siciliano, Microstructural evolution in a new 770 MPa hot rolled Nb–Ti microalloyed steel. Mater. Sci. Eng. A 394, 339–352 (2005)

    Article  Google Scholar 

  21. X. Wang, H. Zhao, C. Shang, X. He, The microstructure and properties of high performance steels with low yield-to-tensile ratio. J. Alloys Compd. 577S, S678–S683 (2013)

    Article  Google Scholar 

  22. K. Nishioka, K. Ichikawa, Progress in thermomechanical control of steel plates and their commercialization. Sci. Technol. Adv. Mater. 13, 1–20 (2012)

    Google Scholar 

  23. P.S. Bandyopadhyay, S.K. Ghosh, S. Kundu, S. Chatterjee, Evolution of microstructure and mechanical properties of thermomechanically processed ultrahigh-strength steel. Metall. Mater. Trans. A 42, 2742–2752 (2011)

    Article  Google Scholar 

  24. F. Fletcher, Meta-analysis of T NR measurements: determining new empirical models based on composition and strain, in: Austenite Processing Symposium (Internal Company Presentation, 2008), pp. 1–14

  25. C. Ma, L. Hou, J. Zhang, L. Zhuang, Influence of thickness reduction per pass on strain, microstructures and mechanical properties of 7050 Al alloy sheet processed by asymmetric rolling. Mater. Sci. Eng. A 650, 454–468 (2016)

    Article  Google Scholar 

  26. I. Tamura, H. Sekine, T. Tanaka and C. Ouchi: Thermomechanical Processing of High-strength Low-alloy Steels, Butterworth & Co. Ltd., 39–91(1988)

  27. ASTM Standard E8 M-96, Standard test methods for tension testing of metallic materials, Annual Book of ASTM Standards, 03.01, 76–96(1996)

  28. N. Tsuji, R. Ueji, Y. Minamino, Y. Saito, A new and simple process to obtain nano-structured bulk low-carbon steel with superior mechanical property. Scr. Mater. 46(4), 305–310 (2002)

    Article  Google Scholar 

  29. Chen Jun, Tang Shuai, Liu Zhen-Yu, Wang Guo-Dong, Microstructural characteristics with various cooling paths and the mechanism of embrittlement and toughening in low-carbon high performance bridge steel. Mater. Sci. Eng. A 559, 241–249 (2013)

    Article  Google Scholar 

  30. Q. Sylvain, M. Ghiath, D. Benoit, Orowan strengthening and forest hardening superposition examined by dislocation dynamics simulations. Acta Mater. 58, 5586–5595 (2010)

    Article  Google Scholar 

  31. B. Verlinden, J. Driver, I. Samajdar, R.D. Doherty, Thermo-Mechanical Processing of Metallic Materials, 1st edn. (Elsevier Pub., Amsterdam, 2007), pp. 417–424

    Google Scholar 

  32. H. Wu, B. Ju, D. Tang, R. Hua, A. Guo, Q. Kang, D. Wang, Effect of Nb addition on the microstructure and mechanical properties of an 1800 MPa ultrahigh strength steel. Mater. Sci. Eng. A 622, 61–66 (2015)

    Article  Google Scholar 

  33. I.A. Yakubtsov, P. Poruks, J.D. Boyd, Microstructure and mechanical properties of bainitic low carbon high strength plate steels. Mater. Sci. Eng. A 480, 109–116 (2008)

    Article  Google Scholar 

  34. R.K. Ray, J.J. Jonas, Transformation textures in steels. Int. Mater. Rev. 35(1), 1–36 (1990)

    Article  Google Scholar 

  35. K. Zhu, O. Bouaziz, C. Oberbillig, M. Huang, An approach to define the effective lath size controlling yield strength of bainite. Mater. Sci. Eng. A 527, 6614–6619 (2010)

    Article  Google Scholar 

  36. S. Chen, Y.G. An, C. Lahaije, Toughness improvement in hot rolled HSLA steel plates through asymmetric rolling. Mater. Sci. Eng. A 625, 374–379 (2015)

    Article  Google Scholar 

  37. Y. You, C. Shang, N. Wenjin, S. Subramanian, Investigation on the microstructure and toughness of coarse grained heat affected zone in X-100 multi-phase pipeline steel with high Nb content. Mater. Sci. Eng. A 558, 692–701 (2012)

    Article  Google Scholar 

  38. A.J. Kaijalainen, P. Suikkanen, L. Pentti Karjalainen, J.J. Jonas, Effect of austenite pancaking on the microstructure, texture, and bendability of an ultrahigh-strength strip steel. Metal. Mater. Trans. A 45, 1273–1283 (2014)

    Article  Google Scholar 

  39. B.C. De Cooman, Structure-properties relationship in TRIP steels containing carbide-free bainite. Curr. Opin. Solid State Mater. Sci. 8, 285–303 (2004)

    Article  Google Scholar 

  40. J. Jin, Y. Lee, Strain hardening behavior of a Fe–18Mn–0.6C–1.5Al TWIP steel. Mater. Sci. Eng. A 527, 157–161 (2009)

    Article  Google Scholar 

  41. H. Rastegari, A. Kermanpur, A. Najafizadeh, Effect of initial microstructure on the work hardening behavior of plain eutectoid steel. Mater. Sci. Eng. A 632, 103–109 (2015)

    Article  Google Scholar 

  42. S. Zhu, Y.L. Kang, K.K. Ren, S.C. Li, Effect of partitioning temperature on work hardening behavior of Q&P steels. Adv. Mater. Res. 299–300, 403–407 (2011)

    Article  Google Scholar 

  43. A.K. De, J.G. Speer, D.K. Matlock, D.C. Murdock, M.C. Mataya, R.J. Comstock Jr., Deformation-induced phase transformation and strain hardening in type 304 austenitic stainless steel. Metall. Mater. Trans. A 37(6), 1875–1886 (2006)

    Article  Google Scholar 

  44. T.S. Byun, I.S. Kim, Tensile properties and inhomogeneous deformation of ferrite-martensite dual-phase steels. J. Mater. Sci. 28(11), 2923–2932 (1993)

    Article  Google Scholar 

  45. F. Ozturk, A. Polat, S. Toros, R.C. Picu, Strain hardening and strain rate sensitivity behaviors of advanced high strength steels. J. Iron. Steel Res. Int. 20(6), 68–74 (2013)

    Article  Google Scholar 

  46. P. Wang, S.P. Lu, N.M. Xiao, D.Z. Li, Y.Y. Li, Effect of delta ferrite on impact properties of low carbon 13Cr–4Ni martensitic stainless steel. Mater. Sci. Eng. A 527, 3210–3216 (2010)

    Article  Google Scholar 

  47. Y.-L. Kang, Q.-H. Han, X.-M. Zhao, M.-H. Cai, Influence of nanoparticle reinforcements on the strengthening mechanisms of an ultrafine-grained dual phase steel containing titanium. Mater. Des. 44, 331–339 (2013)

    Article  Google Scholar 

  48. X.P. Mao, X.D. Huo, X.J. Sun, Y.Z. Chai, Strengthening mechanisms of a new 700 MPa hot rolled Ti-microalloyed steel produced by compact strip production. J. Mater. Process. Technol. 210, 1660–1666 (2010)

    Article  Google Scholar 

  49. Y. Mazaheri, A. Kermanpur, A. Najafizadeh, Strengthening mechanisms of ultrafine grained dual phase steels developed by new thermomechanical processing. ISIJ Int. 55, 218–226 (2015)

    Article  Google Scholar 

  50. J.E. Bailey, P.B. Hirsch, The dislocation distribution, flow stress, and stored energy in cold-worked polycrystalline silver. Phil. Mag. 5, 485–497 (1960)

    Article  Google Scholar 

  51. M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Mater. Sci. Eng. A 527, 2738–2746 (2010)

    Article  Google Scholar 

  52. S.S. Campos, E.V. Morales, H.J. Kestenbach, On strengthening mechanisms in commercial Nb–Ti hot strip steels. Metall. Mater. Trans. A 32A, 1245–1248 (2001)

    Article  Google Scholar 

  53. I. Kozasu, C. Ouchi, T. Sampei, T. Okita, Microalloying ‘75 (Union Carbide Corp., New York, 1976), pp. 120–135

    Google Scholar 

  54. Y. Funakawa, T. Shiozaki, K. Tomita, T. Yamamoto, E. Maeda, Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides. ISIJ Int. 44, 1945–1951 (2004)

    Article  Google Scholar 

  55. J. Hu, L. Du, J. Wang, Effect of cooling procedure on microstructures and mechanical properties of hot rolled Nb–Ti bainitic high strength steel. Mater. Sci. Eng. A 554, 79–85 (2012)

    Article  Google Scholar 

  56. H. Xie, L. Du, J. Hu, R.D.K. Misra, Microstructure and mechanical properties of a novel 1000 MPa grade TMCP low carbon microalloyed steel with combination of high strength and excellent toughness. Mater. Sci. Eng. A 612, 123–130 (2014)

    Article  Google Scholar 

  57. X. Li, C. Lei, X. Deng, Z. Wang, Y. Yu, G. Wang, R.D.K. Misra, Precipitation strengthening in titanium microalloyed high-strength steel plates with new generation-thermomechanical controlled processing (NG-TMCP). J. Alloys Compd. 689, 542–553 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, G., Ghosh, S.K., Chakrabarti, D. et al. Effects of Thermo-mechanical Process Parameters on Microstructure and Crystallographic Texture of High Ni–Mo Ultrahigh Strength Steel. Metallogr. Microstruct. Anal. 7, 222–238 (2018). https://doi.org/10.1007/s13632-018-0432-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-018-0432-7

Keywords

Navigation