Advertisement

Metallography, Microstructure, and Analysis

, Volume 6, Issue 6, pp 519–526 | Cite as

Electrodeposition and Characterization of Ni–W–Cr2O3 Nanocomposite Coating

  • Yadong Zhang
  • Xiang Leng
  • Xiaofen Wang
  • Ping Ou
  • Wanxue Zhang
  • Qiongyu Zhou
Technical Article
  • 125 Downloads

Abstract

In this paper, compact Ni–W and Ni–W–Cr2O3 nanocomposite coatings were deposited on mild steel substrates by DC electrodeposition method. The surface morphology, elemental composition, and structure of the obtained coatings were investigated by scanning electron microscopy, energy dispersive spectrometer, and x-ray diffraction. The corrosion resistance was evaluated by potentiodynamic polarization (Tafel) and electrochemical impedance spectroscopy. It is shown that incorporation of Cr2O3 nanoparticles into amorphous Ni–W coating would transform its structure into crystalline and influence its properties. The microhardness of Ni–W–Cr2O3 nanocomposite coatings (717–764 HV0.1) is significantly bigger than that of Ni–W coating (687 HV0.1). In addition, with increase of Cr2O3 addition in the electroplating bath, a tendency of improvement in hardness and corrosion resistance performance is observed. Finally, an excellent Ni–W–Cr2O3 nanocomposite coating with a slightly lower resistance and much higher hardness compared with Ni–W coating is electrodeposited in the bath containing 20 g/L Cr2O3 nanoparticles.

Keywords

Ni–W alloy Composite coating Cr2O3 nanoparticles Microhardness Corrosion resistance 

Notes

Acknowledgments

This paper is financially supported by the National Natural Science Foundation of China (Grant No. 51504104), Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20151BAB216012, 20161BAB206141), and Education Department of Jiangxi Province (Grant Nos. CJJ160648 and YC2017-S288).

References

  1. 1.
    S. Karami, H. Jafarian, A.R. Eivani et al., Engineering tensile properties by controlling welding parameters and microstructure in a mild steel processed by friction stir welding. Mater. Sci. Eng., A 670, 68–74 (2016)CrossRefGoogle Scholar
  2. 2.
    B. Xu, W. Yang, Y. Liu et al., Experimental and theoretical evaluation of two pyridinecarboxaldehyde thiosemicarbazone compounds as corrosion inhibitors for mild steel in hydrochloric acid solution. Corros. Sci. 78, 260–268 (2014)CrossRefGoogle Scholar
  3. 3.
    Z. Wu, F. Zhou, K. Chen et al., Friction and wear properties of CrSiCN coatings with low carbon content as sliding against SiC and steel balls in water. Tribol. Int. 94, 176–186 (2016)CrossRefGoogle Scholar
  4. 4.
    M. Sheng, Y. Wei, Q. Zhong, The influence of dissolved ozone in a phosphate bath on phosphate coatings on carbon steel. J. Coat. Technol. Res. 6(4), 543–547 (2009)CrossRefGoogle Scholar
  5. 5.
    Q. Zhou, Y. Wang, H. Wu et al., Preparation of passive Cu–Ni–Fe coating on low-carbon steel for improving corrosion resistance. Surf. Coat. Technol. 207, 503–507 (2012)CrossRefGoogle Scholar
  6. 6.
    X. Meng, X. Shi, Q. Zhong et al., Microstructure and corrosion resistance of electrodeposited Ni–Cu–Mo alloy coatings. J. Mater. Eng. Perform. 25(11), 4735–4740 (2016)CrossRefGoogle Scholar
  7. 7.
    X. Zhou, Y. Shen, A novel method designed for electrodeposition of nanocrystalline Ni coating and its corrosion behaviors in Hank’s solution. Appl. Surf. Sci. 324, 677–690 (2015)CrossRefGoogle Scholar
  8. 8.
    M. Sajjadnejad, A. Mozafari, H. Omidvar et al., Preparation and corrosion resistance of pulse electrodeposited Zn and Zn–SiC nanocomposite coatings. Appl. Surf. Sci. 300, 1–7 (2014)CrossRefGoogle Scholar
  9. 9.
    M. Yousefpour, A. Rahimi, Characterization and selection of optimal parameters to achieve the best tribological performance of the electrodeposited Cr nanocomposite coating. Mater. Des. 54, 382–389 (2014)CrossRefGoogle Scholar
  10. 10.
    M. Sheng, C. Lv, L. Hong et al., The influence of ultrasonic frequency on the properties of Ni–Co coatings prepared by ultrasound-assisted electrodeposition. Acta Metall. Sin. 6(26), 735–741 (2013)CrossRefGoogle Scholar
  11. 11.
    K.R. Sriraman, S. Brahimi, J.A. Szpunar et al., Characterization of corrosion resistance of electrodeposited Zn–Ni, Zn and Cd coatings. Electrochim. Acta 105, 314–323 (2013)CrossRefGoogle Scholar
  12. 12.
    K.H. Hou, Y.F. Chang, S.M. Chang et al., The heat treatment effect on the structure and mechanical properties of electrodeposited nano grain size Ni–W alloy coatings. Thin Solid Films 518(24), 7535–7540 (2010)CrossRefGoogle Scholar
  13. 13.
    M.P.Q. Arganaraz, S.B. Ribotta, M.E. Folquer et al., Ni–W coatings electrodeposited on carbon steel: chemical composition, mechanical properties and corrosion resistance. Electrochim. Acta 56(17), 5898–5903 (2011)CrossRefGoogle Scholar
  14. 14.
    A. Chianpairot, G. Lothongkum, C.A. Schuh et al., Corrosion of nanocrystalline Ni–W alloys in alkaline and acidic 3.5 wt.% NaCl solutions. Corros. Sci. 53(3), 1066–1071 (2011)CrossRefGoogle Scholar
  15. 15.
    M.F. Cardinal, P.A. Castro, J. Baxi et al., Characterization and frictional behavior of nanostructured Ni–W–MoS2 composite coatings. Surf. Coat. Technol. 204(1), 85–90 (2009)CrossRefGoogle Scholar
  16. 16.
    X. Fang, X.F. Cui, G. Jin et al., Effect of magnetic field on brush plating Ni–Co alloy. Surf. Eng. 33(2), 142–148 (2017)CrossRefGoogle Scholar
  17. 17.
    M.H. Allahyarzadeh, M. Aliofkhazraei, A.R.S. Rouhaghdam et al., Electrodeposition of Ni–W–Al2O3 nanocomposite coating with functionally graded microstructure. J. Alloy. Compd. 666, 217–226 (2016)CrossRefGoogle Scholar
  18. 18.
    Q. Zhou, W. Xie, Y. Zhang et al., Electrodeposition and corrosion resistance of Ni–W–Al2O3 nanocomposite coatings. Surf. Rev. Lett. 25, 1850015-1–1850015-9 (2017)Google Scholar
  19. 19.
    Y. Wang, Q. Zhou, K. Li et al., Preparation of Ni–W–SiO2 nanocomposite coating and evaluation of its hardness and corrosion resistance. Ceram. Int. 41(1), 79–84 (2015)CrossRefGoogle Scholar
  20. 20.
    K.A. Kumar, G.P. Kalaignan, V.S. Muralidharan, Direct and pulse current electrodeposition of Ni–W–TiO2 nanocomposite coatings. Ceram. Int. 39(3), 2827–2834 (2013)CrossRefGoogle Scholar
  21. 21.
    K.H. Hou, H.H. Sheu, M.D. Ger, Preparation and wear resistance of electrodeposited Ni–W/diamond composite coatings. Appl. Surf. Sci. 308, 372–379 (2014)CrossRefGoogle Scholar
  22. 22.
    Y. Yao, S. Yao, L. Zhang et al., Electrodeposition and mechanical and corrosion resistance properties of Ni–W/SiC nanocomposite coatings. Mater. Lett. 61(1), 67–70 (2007)CrossRefGoogle Scholar
  23. 23.
    K. Kumar, R. Chandramohan, D. Kalyanaraman, Effect of heat treatment on cobalt and nickel electroplated surfaces with Cr2O3 dispersions. Appl. Surf. Sci. 227(1), 383–386 (2004)CrossRefGoogle Scholar
  24. 24.
    M. Srivastava, J.N. Balaraju, B. Ravishankar et al., Improvement in the properties of nickel by nano-Cr2O3 incorporation. Surf. Coat. Technol. 205(1), 66–75 (2010)CrossRefGoogle Scholar
  25. 25.
    H. Alimadadi, M. Ahmadi, M. Aliofkhazraei et al., Corrosion properties of electrodeposited nanocrystalline and amorphous patterned Ni–W alloy. Mater. Des. 30(4), 1356–1361 (2009)CrossRefGoogle Scholar
  26. 26.
    O. Younes, L. Zhu, Y. Rosenberg et al., Electroplating of amorphous thin films of tungsten/nickel alloys. Langmuir 17(26), 8270–8275 (2001)CrossRefGoogle Scholar
  27. 27.
    T. Yamasaki, High-strength nanocrystalline Ni–W alloys produced by electrodeposition. Mater. Phys. Mech. (Russ.) 1(2), 127–132 (2000)Google Scholar
  28. 28.
    I. Mizushima, P.T. Tang, M.A.J. Somers, Identification of an anomalous phase in Ni–W electrodeposits. Surf. Coat. Technol. 202(14), 3341–3345 (2008)CrossRefGoogle Scholar
  29. 29.
    R. Juškėnas, I. Valsiūnas, V. Pakštas et al., On the state of W in electrodeposited Ni–W alloys. Electrochim. Acta 54(9), 2616–2620 (2009)CrossRefGoogle Scholar
  30. 30.
    E. McCafferty, Passivity, in Introduction to Corrosion Science, ed. by K. Howell (Springer New York, 2010), pp. 209–262Google Scholar
  31. 31.
    Q. Zhou, J. Jiang, Q. Zhong et al., Preparation of Cu–Ni–Fe alloy coating and its evaluation on corrosion behavior in 3.5% NaCl solution. J. Alloy. Compd. 563, 171–175 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC and ASM International 2017

Authors and Affiliations

  • Yadong Zhang
    • 1
  • Xiang Leng
    • 1
  • Xiaofen Wang
    • 1
  • Ping Ou
    • 1
  • Wanxue Zhang
    • 1
  • Qiongyu Zhou
    • 1
    • 2
  1. 1.School of Materials Science and EngineeringJiangxi University of Science and TechnologyGanzhouPeople’s Republic of China
  2. 2.Institute of Applied PhysicsJiangxi Academy of SciencesNanchangPeople’s Republic of China

Personalised recommendations