Advertisement

Metallography, Microstructure, and Analysis

, Volume 6, Issue 6, pp 598–609 | Cite as

Fractal Analysis as Applied to Fractography in Ferritic Stainless Steel

  • Sandeep Sahu
  • Prabhat Chand Yadav
  • Shashank Shekhar
Technical Article

Abstract

Fractal analysis has been developed as a tool to analyze the fractal characteristics with less sensitivity to magnification over a wide scale, which can also be used to quantify the fractographic data. In this work, two different techniques of fractal analysis were used to calculate the fractal dimension. In the first method, the fracture surface morphology was utilized, and in the second method, the roughness profile of the fracture surface was utilized in order to calculate the fractal dimension. The purpose of the work is to compare the effectiveness of these two fractal techniques in characterizing the mode of fracture. For it, the results of fractal analysis were compared with the quantified results obtained using conventional fractography analysis. Moreover, fractal dimension obtained using roughness profile had a positive linear correspondence with impact energy, and this result has been discussed in terms of fracture micromechanism.

Keywords

Failure analysis Fractography Electron microscopy Fractal analysis Fractal dimension Image analysis 

Notes

Acknowledgments

This work was supported by Bharat Heavy Electricals Limited, Haridwar manufacturing unit, India under Project Grant No. BHEL-MET-20110158. The authors would like to thank staff members of electron microscope facility at Advanced Centre for Materials Science, Indian Institute of Technology Kanpur, India, for providing the characterization facilities used in the present work.

Supplementary material

13632_2017_396_MOESM1_ESM.docx (43 kb)
Supplementary material 1 (DOCX 42 kb)
13632_2017_396_MOESM2_ESM.docx (4.3 mb)
Supplementary material 2 (DOCX 4389 kb)

References

  1. 1.
    I. Dlouhy, M. Holzmann, Micromechanical aspects of transgranular and intergranular failure competition, fracture of nano and engineering materials and structures, in Proceedings of the 16th European Conference of Fracture, Alexandroupolis, Greece, July 3–7, 2006, E. E. Gdoutos (Springer, Netherlands, 2006), pp. 865–866Google Scholar
  2. 2.
    J.C. Chesnutt, R.A. Spurling, Fracture topography—microstructure correlations in the SEM. Metall. Trans. A 8(1), 216–218 (1977)CrossRefGoogle Scholar
  3. 3.
    J. Healey, J. Mecholsky, Scanning electron microscopy techniques and their application to failure analysis of brittle materials, in Fractography of ceramic and metal failures, ASTM, pp. 157–181 (1984)Google Scholar
  4. 4.
    E. Underwood, Quantitative fractography, in Applied Metallography, ed. by G. Vander Voort (Springer, Berlin, 1986), pp. 101–122CrossRefGoogle Scholar
  5. 5.
    G.O. Fior, J.W. Morris, Characterization of cryogenic Fe–6Ni steel fracture modes: a three dimensional quantitative analysis. Metall. Trans. A 17(5), 815–822 (1986)CrossRefGoogle Scholar
  6. 6.
    K. Banerji, Quantitative fractography: a modern perspective. Metall. Trans. A 19(4), 961–971 (1988)CrossRefGoogle Scholar
  7. 7.
    D. Hull, Fractography: observing, measuring and interpreting fracture surface topography (Cambridge University Press, Cambridge, 1999)Google Scholar
  8. 8.
    E. Rädlein, G.H. Frischat, Atomic force microscopy as a tool to correlate nanostructure to properties of glasses. J. Non-Cryst. Solids 222, 69–82 (1997)CrossRefGoogle Scholar
  9. 9.
    B.M. Strauss, S.K. Putatunda, Quantitative Methods in Fractography, in Proceedings of the Symposium on Evaluation and Techniques in Fractography, Atlanta, GA, Nov. 10, 1988, No. CONF-8811253, Philadelphia, ASTM (1990)Google Scholar
  10. 10.
    H. Kostron, Metallographic grain size determination: I. Meas. Tech. Arch. Metallk 3, 193–203 (1949)Google Scholar
  11. 11.
    E.E. Underwood, K. Banerji, Fractals in fractography. Mater. Sci. Eng. 80(1), 1–14 (1986)CrossRefGoogle Scholar
  12. 12.
    B. Gregory, H. Hall, G. Bullock, Measurement of interlamellar spacing of pearlite. Trans. Am. Soc. Metals 54(106), 743–745 (1961)Google Scholar
  13. 13.
    J.J. Mecholsky Jr., Fractal analysis and fractography: what can we learn that’s new? Key Eng. Mater. 409, 145–153 (2009)CrossRefGoogle Scholar
  14. 14.
    C.S. Pande, L.E. Richards, N. Louat, B.D. Dempsey, A.J. Schwoeble, Fractal characterization of fractured surfaces. Acta Metall. 35(7), 1633–1637 (1987)CrossRefGoogle Scholar
  15. 15.
    X. Li, J. Tian, Y. Kang, Z. Wang, Quantitative analysis of fracture surface by roughness and fractal method. Scr. Metall. Mater. 33(5), 803–809 (1995)CrossRefGoogle Scholar
  16. 16.
    B.B. Mandelbrot, Fractal: Form, Chance and Dimension (W. H. Freeman and Co., San Francisco, 1977)Google Scholar
  17. 17.
    B.B. Mandelbrot, The Fractal Geometry of Nature, Revised and Enlarged Edition, 1977th edn. (WH Freeman and Co., New York, 1983)Google Scholar
  18. 18.
    A.P. Pentland, Fractal-based description of natural scenes. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6(6), 661–674 (1984)CrossRefGoogle Scholar
  19. 19.
    H.-O. Peitgen, H. Jürgens, D. Saupe, Chaos and Fractals: New Frontiers of Science (Springer, Berlin, 2006)Google Scholar
  20. 20.
    B.B. Mandelbrot, D.E. Passoja, A.J. Paullay, Fractal character of fracture surfaces of metals. Nature 308(5961), 721–722 (1984)CrossRefGoogle Scholar
  21. 21.
    A. Giorgilli, D. Casati, L. Sironi, L. Galgani, An efficient procedure to compute fractal dimensions by box counting. Phys. Lett. A 115(5), 202–206 (1986)CrossRefGoogle Scholar
  22. 22.
    J.J. Walsh, J. Watterson, Fractal analysis of fracture patterns using the standard box-counting technique: valid and invalid methodologies. J. Struct. Geol. 15(12), 1509–1512 (1993)CrossRefGoogle Scholar
  23. 23.
    E. Charkaluk, M. Bigerelle, A. Iost, Fractals and fracture. Eng. Fract. Mech. 61(1), 119–139 (1998)CrossRefGoogle Scholar
  24. 24.
    S. Peleg, J. Naor, R. Hartley, D. Avnir, Multiple resolution texture analysis and classification. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6(4), 518–523 (1984)CrossRefGoogle Scholar
  25. 25.
    J.M. Read, N.S.N. Lam, Spatial methods for characterising land cover and detecting land-cover changes for the tropics. Int. J. Remote Sens. 23(12), 2457–2474 (2002)CrossRefGoogle Scholar
  26. 26.
    G. Zhou, N.S.N. Lam, A comparison of fractal dimension estimators based on multiple surface generation algorithms. Comput. Geosci. 31(10), 1260–1269 (2005)CrossRefGoogle Scholar
  27. 27.
    H.-O. Peitgen, D. Saupe, The Science of Fractal Images (Springer, Berlin, 1988)Google Scholar
  28. 28.
    V. Hotar, F. Novotny, Surface profile evaluation by fractal dimension and statistic tools, ICF11, Italy (2005)Google Scholar
  29. 29.
    V. Hotař, A. Hotař, Surface profile evaluation by fractal dimension and statistic tools using matlab, in Proceedings: Technical Computing, Prague (2007)Google Scholar
  30. 30.
    D.N. Winslow, The fractal nature of the surface of cement paste. Cem. Concr. Res. 15(5), 817–824 (1985)CrossRefGoogle Scholar
  31. 31.
    T. Pajkossy, Electrochemistry at fractal surfaces. J. Electroanal. Chem. Interfacial Electrochem. 300(1), 1–11 (1991)CrossRefGoogle Scholar
  32. 32.
    J.M. Gomez-Rodriguez, A.M. Baro, L. Vazquez, R.C. Salvarezza, J.M. Vara, A.J. Arvia, Fractal surfaces of gold and platinum electrodeposits: dimensionality determination by scanning tunneling microscopy. J. Phys. Chem. 96(1), 347–350 (1992)CrossRefGoogle Scholar
  33. 33.
    P. Herrasti, P. Ocón, R.C. Salvarezza, J.M. Vara, L. Vázquez, A.J. Arvia, A comparative study of electrodeposited and vapour deposited gold films: fractal surface characterization through scanning tunnelling microscopy, microscopy. Electrochim. Acta 37(12), 2209–2214 (1992)CrossRefGoogle Scholar
  34. 34.
    A. Imre, T. Pajkossy, L. Nyikos, Electrochemical determination of the fractal dimension of fractured surfaces. Acta Metall. Mater. 40(8), 1819–1826 (1992)CrossRefGoogle Scholar
  35. 35.
    K.K. Ray, G. Mandal, Study of correlation between fractal dimension and impact energy in a high strength low alloy steel. Acta Metall. Mater. 40(3), 463–469 (1992)CrossRefGoogle Scholar
  36. 36.
    O.A. Hilders, D. Pilo, On the development of a relation between fractal dimension and impact toughness. Mater. Charact. 38(3), 121–127 (1997)CrossRefGoogle Scholar
  37. 37.
    R.E. Williford, Scaling similarities between fracture surfaces, energies, and a structure parameter. Scr. Metall. 22(2), 197–200 (1988)CrossRefGoogle Scholar
  38. 38.
    L.R. Carney, J.J. Mecholsky, Relationship between fracture toughness and fracture surface fractal dimension in AISI 4340 steel. Mater. Sci. Appl. 4(4), 258–267 (2013)Google Scholar
  39. 39.
    D.L. Davidson, Fracture surface roughness as a gauge of fracture toughness: aluminium-particulate SiC composites. J. Mater. Sci. 24(2), 681–687 (1989)CrossRefGoogle Scholar
  40. 40.
    L.E. Richards, B.D. Dempsey, Fractal characterization of fractured surfaces in Ti-4.5 Al-5.0 Mo-1.5 Cr (Corona 5). Scr. Metall. 22(5), 687–689 (1988)CrossRefGoogle Scholar
  41. 41.
    K. Wiencek, A. Czarski, T. Skowronek, Fractal characterization of fractured surfaces of a steel containing dispersed Fe3C carbide phase. Mater. Charact. 46(2–3), 235–238 (2001)CrossRefGoogle Scholar
  42. 42.
    E. Bouchaud, G. Lapasset, J. Planès, Fractal dimension of fractured surfaces: a universal value? Europhys. Lett. 13(1), 73–79 (1990)CrossRefGoogle Scholar
  43. 43.
    O.A. Hilders, M. Ramos, N.D. Peña, L. Sáenz, Effect of 475 °C embrittlement on fractal behavior and tensile properties of a duplex stainless steel. J. Mater. Eng. Perform. 8(1), 87–90 (1999)CrossRefGoogle Scholar
  44. 44.
    J.J. Mecholsky, D.E. Passoja, K.S. Feinberg-Ringel, Quantitative analysis of brittle fracture surfaces using fractal geometry. J. Am. Ceram. Soc. 72(1), 60–65 (1989)CrossRefGoogle Scholar
  45. 45.
    V.Y. Milman, N.A. Stelmashenko, R. Blumenfeld, Fracture surfaces: a critical review of fractal studies and a novel morphological analysis of scanning tunneling microscopy measurements. Prog. Mater. Sci. 38, 425–474 (1994)CrossRefGoogle Scholar
  46. 46.
    B. Klinkenberg, A review of methods used to determine the fractal dimension of linear features. Math. Geol. 26(1), 23–46 (1994)CrossRefGoogle Scholar
  47. 47.
    G.P. Cherepanov, A.S. Balankin, V.S. Ivanova, Fractal fracture mechanics—a review. Eng. Fract. Mech. 51(6), 997–1033 (1995)CrossRefGoogle Scholar
  48. 48.
    Z. Shou-Zhu, L. Chi-Wei, Fractal dimension and fracture toughness. J. Phys. D Appl. Phys. 22(6), 790 (1989)CrossRefGoogle Scholar
  49. 49.
    R.H. Dauskardt, F. Haubensak, R.O. Ritchie, On the interpretation of the fractal character of fracture surfaces. Acta Metall. Mater. 38(2), 143–159 (1990)CrossRefGoogle Scholar
  50. 50.
    Q.Y. Long, S. Li, C.W. Lung, Studies on the fractal dimension of a fracture surface formed by slow stable crack propagation. J. Phys. D Appl. Phys. 24(4), 602 (1991)CrossRefGoogle Scholar
  51. 51.
    A. Celli, A. Tucci, L. Esposito, C. Palmonari, Fractal analysis of cracks in alumina–zirconia composites. J. Eur. Ceram. Soc. 23(3), 469–479 (2003)CrossRefGoogle Scholar
  52. 52.
    D. Read, R.P. Reed, Fracture mechanics: eighteenth symposium, ASTM (1988)Google Scholar
  53. 53.
    C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9(7), 671–675 (2012)CrossRefGoogle Scholar
  54. 54.
    H. Sasaki, S. Shibata, T. Hatanaka, An evaluation method of ecotypes of Japanese lawn grass (Zoysia japonica STEUD) for three different ecological functions. Bull. Natl. Grassl. Res. Ins.t 49, 17–24 (1994)Google Scholar
  55. 55.
    H. Su, Z. Yan, J.T. Stanley, Fractal analyses of microstructure and properties of HSLA steels. J. Mater. Sci. Lett. 14(20), 1436–1439 (1995)CrossRefGoogle Scholar
  56. 56.
    Z.Q. Mu, C.W. Lung, Studies on the fractal dimension and fracture toughness of steel. J. Phys. D Appl. Phys. 21(5), 848 (1988)CrossRefGoogle Scholar
  57. 57.
    Z.G. Wang, D.L. Chen, X.X. Jiang, S.H. Ai, C.H. Shih, Relationship between fractal dimension and fatigue threshold value in dual-phase steels. Scr. Metall. 22(6), 827–832 (1988)CrossRefGoogle Scholar
  58. 58.
    S. Hui, Z. Yugui, Y. Zhenqi, Fractal analysis of microstructures and properties in ferrite-martensite steels. Scr. Metall. Mater. 25(3), 651–654 (1991)CrossRefGoogle Scholar
  59. 59.
    G.M. Lin, J.K.L. Lai, Fractal characterization of fracture surfaces in a resin-based composite. J. Mater. Sci. Lett. 12(7), 470–472 (1993)CrossRefGoogle Scholar
  60. 60.
    V.E. Saouma, C.C. Barton, Fractals, fractures, and size effects in concrete. J. Eng. Mech. 120(4), 835–854 (1994)CrossRefGoogle Scholar
  61. 61.
    J.J. Mecholsky, T.J. Mackin, Fractal analysis of fracture in Ocala chert. J. Mater. Sci. Lett. 7(11), 1145–1147 (1988)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC and ASM International 2017

Authors and Affiliations

  • Sandeep Sahu
    • 1
  • Prabhat Chand Yadav
    • 1
  • Shashank Shekhar
    • 1
  1. 1.Structural Nanomaterials Lab, Department of Materials Science and EngineeringIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations