Advertisement

Metallography, Microstructure, and Analysis

, Volume 6, Issue 6, pp 541–552 | Cite as

Microstructural and Mechanical Characterization of CNT- and Al2O3-Reinforced Aluminum Matrix Nanocomposites Prepared by Powder Metallurgy Route

  • Meysam Toozandehjani
  • Farhad Ostovan
Technical Article
  • 97 Downloads

Abstract

In this work, carbon nanotube (CNT) and alumina (Al2O3) nanoparticles have been incorporated into the pure aluminum (Al) matrix using ball milling as a part of powder metallurgy route. The benefits and limitations of addition of different amounts of CNT and Al2O3 nanoparticles into pure aluminum matrix have been investigated. Different amounts of CNT and Al2O3 nanoparticles were dispersed into pure Al matrix using ball milling at different times from 0.5 h up to 12 h. Composite powders were consolidated by uniaxial cold pressing at a pressure of 150 MPa followed by sintering at 530 °C under argon atmosphere. From microstructural point of view, ball milling was found to be an effective method for dispersion of CNT and Al2O3 nanoparticles within pure aluminum matrix. It should be noted that there is limitation when a large weigh fraction of CNTs is used. It was found that the threshold of CNTs is 2 wt.%; however, up to 10 wt.% of Al2O3 nanoparticles can be used. Most of Al-CNT and Al-Al2O3 nanocomposites were found to reach steady state after 8 of milling except Al-5CNT and Al-10CNTs which never reached steady state due to the formation of big agglomerates resulting in non-homogenous nanocomposite powders. Young’s modulus and hardness of Al-CNT nanocomposites were found to be higher than Al-Al2O3 nanocomposites, while a homogenous dispersion of reinforcements within matrix was observed.

Keywords

Aluminum matrix nanocomposites Ball milling Powder metallurgy Microstructure Mechanical properties 

Notes

Acknowledgments

The authors would like to thank Associated Professor Khamirul Amin Matori for his academic support given throughout this research work.

References

  1. 1.
    M.K. Surappa, Aluminium matrix composites: challenges and opportunities. Sadhana. 28(1), 319–334 (2003)CrossRefGoogle Scholar
  2. 2.
    J.M. Torralba, C.E. Da Costa, F.J. Velasco, P/M aluminum matrix composites: an overview. J. Mater. Process. Tech. 133(1–2), 203–206 (2003)CrossRefGoogle Scholar
  3. 3.
    K.U. Kainer, Metal matrix composites: custom-made materials for automotive and aerospace engineering (Wiley, New York, 2006)CrossRefGoogle Scholar
  4. 4.
    R. Casati, M. Vedani, Metal matrix composites reinforced by nanoparticles—a review. Metals 4, 65–83 (2014)CrossRefGoogle Scholar
  5. 5.
    F. Ostovan, K.A. Matori, M. Toozandehjani, A. Oskoueian, H.M. Yusoff, R. Yunus, A.H.M. Ariff, Microstructural evaluation of ball-milled nano Al2O3 particulate-reinforced aluminum matrix composite powders. Int. J. Mater. Res. 106(6), 636–640 (2015)CrossRefGoogle Scholar
  6. 6.
    M.K. Aghajanian, R.A. Langensiepen, M.A. Rocazella, J.T. Leighton, C.A. Andersson, The effect of particulate loading on the mechanical behaviour of Al2O3/Al metal-matrix composites. J. Mater. Sci. 28(24), 6683–6690 (1993)CrossRefGoogle Scholar
  7. 7.
    S.M. Zebarjad, S.A. Sajjadi, Dependency of physical and mechanical properties of mechanical alloyed Al-Al2O3 composite on milling time. Mater. Des. 28(7), 2113–2120 (2007)CrossRefGoogle Scholar
  8. 8.
    Y.C. Kang, S.L.I. Chan, Tensile properties of nanometric Al2O3 particulate-reinforced aluminum matrix composites. Mater. Chem. Phys. 85(2), 438–443 (2004)CrossRefGoogle Scholar
  9. 9.
    A.M.K. Esawi, K. Morsi, A. Sayed, A.A. Gawad, P. Borah, Fabrication and properties of dispersed carbon nanotube-aluminum composites. Mater. Sci. Eng. A 508(1), 167–173 (2009)CrossRefGoogle Scholar
  10. 10.
    A.M.K. Esawi, K. Morsi, Dispersion of carbon nanotubes (CNTs) in aluminum powder. Compos. A Appl. Sci. Manuf. 38(2), 646–650 (2007)CrossRefGoogle Scholar
  11. 11.
    A.M.K. Esawi, K. Morsi, A. Sayed, M. Taher, S. Lanka, Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminum composites. Compos. Sci. Tech. 70(16), 2237–2241 (2010)CrossRefGoogle Scholar
  12. 12.
    R. Perez-Bustamante, I. Estrada-Guel, W. Antunez-Flores, M. Miki-Yoshida, P.J. Ferreira, R. Martinez-Sanchez, Novel Al-matrix nanocomposites reinforced with multi-walled carbon nanotubes. J. Alloy. Compound. 450(1–2), 323–326 (2008)CrossRefGoogle Scholar
  13. 13.
    S.R. Bakshi, A. Agarwal, An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites. Carbon 49(2), 533–544 (2011)CrossRefGoogle Scholar
  14. 14.
    C. Suryanarayana, N. Al-Aqeeli, Mechanically alloyed nanocomposites. Prog. Mater Sci. 58(4), 383–502 (2013)CrossRefGoogle Scholar
  15. 15.
    H. Uozumi, K. Kobayashi, K. Nakanishi, T. Matsunaga, K. Shinozaki, H. Sakamoto, M. Yoshida, Fabrication process of carbon nanotube/light metal matrix composites by squeeze casting. Mater. Sci. Eng. A 495(1–2), 282–287 (2008)CrossRefGoogle Scholar
  16. 16.
    F. Ostovan, K.A. Matori, M. Toozandehjani, A. Oskoueian, H.M. Yusoff, R. Yunus, A.H.M. Ariff, H.J. Quah, W.F. Lim, Effects of CNTs content and milling time on mechanical behavior of MWCNT-reinforced aluminum nanocomposites. Mater. Chem. Phys. 166(15), 160–166 (2015)CrossRefGoogle Scholar
  17. 17.
    F. Tang, I.E. Anderson, S.B. Biner, Solid state sintering and consolidation of Al powders and Al matrix composites. J. Light Met. 2(4), 201–214 (2002)CrossRefGoogle Scholar
  18. 18.
    J.B. Fogagnolo, F. Velasco, M.H. Robert, J.M. Torralba, Effect of mechanical alloying on the morphology, microstructure and properties of aluminum matrix composite powders. Mater. Sci. Eng. A 342(1), 131–143 (2003)CrossRefGoogle Scholar
  19. 19.
    C. Suryanarayana, Mechanical alloying and milling. Prog. Mater Sci. 46(1), 1–184 (2001)CrossRefGoogle Scholar
  20. 20.
    F. Ostovan, K.A. Matori, M. Toozandehjani, A. Oskoueian, H.M. Yusoff, R. Yunus, A.H.M. Ariff, Nanomechanical behavior of multi-walled carbon nanotubes particulate reinforced aluminum nanocomposites prepared by ball milling. Materials. 9(3), 140 (2016)CrossRefGoogle Scholar
  21. 21.
    Toozandehjani, M., Matori, K.A., Ostovan, F., Sidek, A.A. Shuhazlly M.M.: Effect of milling time on the microstructure, physical and mechanical properties of Al-Al2O3 nanocomposite synthesized by ball milling and powder metallurgy. Materials. 10. (2017)Google Scholar
  22. 22.
    W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation. J. Mater. Res. 7(06), 1564–1583 (1992)CrossRefGoogle Scholar
  23. 23.
    B. Xiong, Z. Xu, Q. Yan, B. Lu, C. Cai, Effects of SiC volume fraction and aluminum particulate size on interfacial reactions in SiC nanoparticulate reinforced aluminum matrix composites. J. Alloy. Compound. 509(4), 1187–1191 (2011)CrossRefGoogle Scholar
  24. 24.
    K.E. Thomson, D. Jiang, R.O. Ritchie, A.K. Mukherjee, A preservation study of carbon nanotubes in alumina-based nanocomposites via Raman spectroscopy and nuclear magnetic resonance. Appl. Phys. A 89(3), 651–654 (2007)CrossRefGoogle Scholar
  25. 25.
    J.S. Benjamin, M.J. Bomford, Dispersion strengthened aluminum made by mechanical alloying. Metall. Trans. A 8(8), 1301–1305 (1997)CrossRefGoogle Scholar
  26. 26.
    J.H. Ahn, Y.J. Kim, S.S. Yang, Multiwall carbon nanotube reinforced aluminum matrix composites prepared by ball milling. Appl. Mech. Mater. 372, 119–122 (2013)CrossRefGoogle Scholar
  27. 27.
    H. Ahamed, V. Senthilkumar, Role of nano-size reinforcement and milling on the synthesis of nano-crystalline aluminium alloy composites by mechanical alloying. J. Alloy. Compound. 505(2), 772–782 (2010)CrossRefGoogle Scholar
  28. 28.
    H. Kwon, M. Saarna, S. Yoon, A. Weidenkaff, M. Leparoux, Effect of milling time on dual-nanoparticulate-reinforced aluminum alloy matrix composite materials. Mater. Sci. Eng. A 590, 338–345 (2014)CrossRefGoogle Scholar
  29. 29.
    S.M. Zebarjad, S.A. Sajjadi, Microstructure evaluation of Al-Al2O3 composite produced by mechanical alloying method. Mater. Design. 27(8), 684–688 (2006)CrossRefGoogle Scholar
  30. 30.
    B. Prabhu, C. Suryanarayana, L. An, R. Vaidyanathan, Synthesis and characterization of high volume fraction Al-Al2O3 nanocomposite powders by high-energy milling. Mater. Sci. Eng. A 425(1), 192–200 (2006)CrossRefGoogle Scholar
  31. 31.
    X.C. Zhang, B.S. Xu, F.Z. Xuan, S.T. Tu, H.D. Wang, Y.X. Wu, Porosity and effective mechanical properties of plasma-sprayed Ni-based alloy coatings. Appl. Surf. Sci. 255(8), 4362–4371 (2009)CrossRefGoogle Scholar
  32. 32.
    C.N. He, N.Q. Zhao, C.S. Shi, S.Z. Song, Mechanical properties and microstructures of carbon nanotube-reinforced Al matrix composite fabricated by in situ chemical vapor deposition. J. Alloy. Compound. 487(1), 258–262 (2009)CrossRefGoogle Scholar
  33. 33.
    K.M. Shorowordi, T. Laoui, A.S.M.A. Haseeb, J.P. Celis, L. Froyen, Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composites: a comparative study. J. Mater. Process. Technol. 142(3), 738–743 (2003)CrossRefGoogle Scholar
  34. 34.
    M. Kouzeli, L. Weber, C. San Marchi, A. Mortensen, Influence of damage on the tensile behavior of pure aluminum reinforced with ≥ 40 vol pct alumina particles. Acta Mater. 49(18), 3699–3709 (2001)CrossRefGoogle Scholar
  35. 35.
    A.A. Mazilkin, M.M. Myshlyaev, Microstructure and thermal stability of superplastic aluminium-lithium alloy after severe plastic deformation. J. Mater. Sci. 41(12), 3767–3772 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC and ASM International 2017

Authors and Affiliations

  1. 1.Materials Synthesis and Characterization Laboratory, Institute of Advanced TechnologyUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Department of Material Science and EngineeringIslamic Azad UniversityBandar AbbasIran

Personalised recommendations