Spatial patterns of Mexican beech seedlings (Fagus grandifolia subsp. mexicana (Martínez) A.E. Murray): influence of canopy openness and conspecific trees on recruitment mechanisms

  • Ernesto Chanes Rodríguez-Ramírez
  • Ana Paola Martínez-Falcón
  • Isolda Luna-Vega
Original Paper


Key message

Recruitment strategies of Mexican beech seedlings depend on mother tree distribution and light incidence in early stages of development. Spatial patterns are also affected by the structure and composition of tree species within Mexican beech forests.


Canopy openness and conspecific trees play a key role in Mexican beech spatial distribution and might strongly influence ecosystem functioning in the Tropical Montane Cloud Forest. The observed relationship between diameter at breast height of conspecific trees and the spatial distribution of beech seedlings indicates that structure and composition of tree species are crucial for the establishment and survival of seedlings, providing protection during the first developmental stages.


To describe the spatial patterns of beech seedlings’ distribution after a masting event and to evaluate the association of these patterns with canopy openness, conspecific tree distribution, and occurrence of other canopy species.


We sampled individual Mexican beech seedlings on two highly conserved beech forests. We selected 100 subplots (10 × 10 m) on each one to measure seedlings and spatial attributes. We counted the number of beech seedlings and number of mature trees species on each subplot. In addition, we measured the levels of canopy openness and the diameter at breast height for all mature trees in each subplot. Spatial pattern of beech seedlings and their association with adult trees and other species were examined.


Mexican beech seedlings showed significant pattern of spatial aggregation. Significant associations were found between beech seedlings, canopy openness, and beech tree adults, while significant disassociations exist among beech seedlings and other species of trees such as Quercus meavei, Q. delgadoana, Q. trinitatis, and Magnolia schiedeana.


The presence of oak species and Magnolia schiedeana in the surroundings and the structure and composition within forests may play a key role in the maintenance of the specific micro-environmental conditions required by Mexican beech recruitment after a masting event.


Beechnuts Fagus grandifolia subsp. mexicana Masting year Recruitment Seedlings Spatial aggregation 



We thank Brenda Muñoz-Vazquez, Guadalupe Pérez-Paredes, Rodrigo Ortega, and Othón Álcantara-Ayala for their support during fieldwork. The first author thanks the postdoctoral fellowship DGAPA-UNAM 2015-2016.


This research was financed by the projects PAPIIT IV201015 and IN223218.

Supplementary material

13595_2018_698_MOESM1_ESM.docx (20 kb)
ESM 1 (DOCX 19 kb)


  1. Akaji Y, Miyazaki Y, Hirobe M, Makimoto T, Sakamoto K (2016) The relationship between seedling survival rates and their genetic relatedness to neighboring conspecific adults. Plant Ecol 217:465–470. CrossRefGoogle Scholar
  2. Alvarez-Aquino C, Williams-Linera G (2002) Seedling bank dynamics of Fagus grandifolia var. mexicana before and after a mast year in a Mexican cloud forest. J Veg Sci 13:179–184. Google Scholar
  3. Alvarez-Aquino C, Williams-Linera G, Newton AC (2004) Experimental native tree seedling establishment for the restoration of a Mexican cloud forest. Restor Ecol 12:412–418. CrossRefGoogle Scholar
  4. Ariya U, Hamano KY, Makimoto T, Kinoshita S, Akaji Y, Miyazaki Y, Hirobe M, Sakamoto K (2015) Temporal and spatial dynamics of an old-growth beech forest in western Japan. J For Res 21:73–83. CrossRefGoogle Scholar
  5. Barna M, Bosela M (2015) Tree species diversity change in natural regeneration of a beech forest under different management. For Ecol Manag 342:93–102. CrossRefGoogle Scholar
  6. Batjes NH (1997) A world dataset of derived soil properties by FAO/UNESCO soil unit for global modelling. Soil Use Manag 13:9–16. CrossRefGoogle Scholar
  7. Beaudet M, Messier C (2008) Beech regeneration of seed and root sucker origin: a comparison morphology, growth, survival, and response to defoliation. For Ecol Manag 255:3659–3666. CrossRefGoogle Scholar
  8. Bell ED (1998) Spatio-temporal dynamics of UK moths. Ph. D. thesis, University of Leicester, UKGoogle Scholar
  9. Camacho-Cruz A, González-Espinosa M, Wolf JHD, De Jong BHJ (2000) Germination and survival of tree species in disturbed forests of the highlands of Chiapas, Mexico. Can J Bot 78:1309–1318. Google Scholar
  10. Camarero J, Gutiérrez E, Fortin MJ, Ribbens E (2005) Spatial patterns of tree recruitment in a relict population of Pinus uncinata: forest expansion through stratified diffusion. J Biogeogr 32:1979–1992. CrossRefGoogle Scholar
  11. Čater M, Kobler A (2017) Light response of Fagus sylvatica L. and Abies alba Mill. in different categories of forest edge—vertical abundance in two silvicultural systems. For Ecol Manag 391:417–426. CrossRefGoogle Scholar
  12. Cleavitt NL, Fairbairn M, Fahey TJ (2008) Growth and survivorship of American beech (Fagus grandifolia Ehrh.) seedlings in a northern hardwood forest following a mast event. J Torrey Bot Soc 135:328–345. CrossRefGoogle Scholar
  13. Collet C, Chenost C (2006) Using competition and light estimates to predict diameter and height growth of naturally regenerated beech seedlings growing under changing canopy conditions. Forestry 79:489–502. CrossRefGoogle Scholar
  14. Collin A, Messier C, Kembel SW, Bélanger N (2017) Low light availability associated with American beech is the main factor for reduced sugar maple seedling survival and growth rates in a hardwood forest of southern Quebec. Forests 8:1–13. CrossRefGoogle Scholar
  15. Connell JH, Tracey JG, Webb LJ (1984) Compensatory recruitment, growth, and mortality as factors maintaining rain-forest tree diversity. Ecol Monogr 54:141–164. CrossRefGoogle Scholar
  16. Dieringer G, Espinosa SJE (1994) Reproductive ecology of Magnolia schiedeana (Magnoliaceae), a threatened cloud forest tree species in Veracruz, Mexico. J Torrey Bot Soc 121:154–159. CrossRefGoogle Scholar
  17. Dusan R, Stjepan M, Igor A, Jurij D (2007) Gap regeneration patterns in relationship to light heterogeneity in two old-growth beech-fir forest reserves in South East Europe. Forestry 80:431–443. CrossRefGoogle Scholar
  18. Dutilleul P (1993) Modifying the t-test for assessing correlation between two spatial processes. Biometrics 49:305–314Google Scholar
  19. E Silva D, Rezende-Mazzella P, Legay M, Corcket E, Dupouey JL (2012) Does natural regeneration determine the limit of European beech distribution under climatic stress? For Ecol Manag 266:262–272. CrossRefGoogle Scholar
  20. Ehnis DE (1981) Fagus mexicana Martínez: su ecología e importancia. B.Sc. thesis, Facultad de Ciencias, Universidad Nacional Autónoma de México. Mexico CityGoogle Scholar
  21. Fiala ACS, Garman SL, Gray AN (2006) Comparison of five canopy cover estimation techniques in the western Oregon Cascades. For Ecol Manag 232:188–197. CrossRefGoogle Scholar
  22. García E (1988) Modificaciones al Sistema de Clasificación Climática de Köppen, 5th edn. Instituto de Geografía. Universidad Nacional Autónoma de México, Mexico CityGoogle Scholar
  23. Gazol A, Ibáñez R (2010) Scale-specific determinants of a mixed beech and oak seedling-sapling bank under different environmental and biotic conditions. Plant Ecol 211:37–48. CrossRefGoogle Scholar
  24. Godínez-Ibarra O, Ángeles-Pérez G, López-Mata L, García-Moya E, Valdez-Hernández JI, Santos-Posadas HD, Trinidad-Santos A (2007) Lluvia de semillas y emergencia de plántulas de Fagus grandifolia subsp. mexicana en La Mojonera, Hidalgo, México. Rev Mex Biodivers 78:117–128Google Scholar
  25. González-Espinosa M, Meave JA, Lorea-Hernández FG, Ibarra-Manríquez G, Newton AC (2011) The red list of Mexican cloud forest trees. Fauna & Flora International Cambridge, UKGoogle Scholar
  26. Gorzelak MA, Asay AK, Pickles BJ, Simard SW (2015) Inter-plant communication through mycorrhizal networks mediates complex adaptive behavior in plant communities. AoB Plants 7:1–13. CrossRefGoogle Scholar
  27. Hardiman BS, Bohrer G, Gough CM, Vogel CS, Curtis PS (2011) The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest. Ecology 92:1818–1827. CrossRefPubMedGoogle Scholar
  28. Ishida B, Masaki T, Miyamoto A, Tanaka H, Nakashizuka T (2015) Projection of the probability of local extinction of canopy tree species in forest landscapes. J For Res 20:337–346. CrossRefGoogle Scholar
  29. Janzen DH (1970) Herbivores and the number of tree species in tropical forests. Am Nat 104:501–528. CrossRefGoogle Scholar
  30. Jennings SB, Brown ND, Sheil D (1999) Assessing forest canopies and understorey illumination: canopy closure, canopy cover and other measures. Forestry 72:59–74. CrossRefGoogle Scholar
  31. Kelly D (1994) The evolutionary ecology of mast seeding. Trends Ecol Evol 9:465–470. CrossRefPubMedGoogle Scholar
  32. Kelly D, Sork VL (2002) Mast seeding in perennial plants: why, how, where? Annu Rev Ecol Evol Syst 33:427–447. CrossRefGoogle Scholar
  33. Kiers ET, Duhamel M, Beesetty Y, Mesah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bücking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882. CrossRefPubMedGoogle Scholar
  34. Kindt R, Coe R (2005) Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. Nairobi: World Agroforestry Centre (ICRAF)Google Scholar
  35. Kitabatake T, Wada N (2001) Notes on beech (Fagus crenata Blume) seed and seedling mortality due to rodent herbivory in a northernmost beech forest, Utasai, Hokkaido. J For Res 6:111–115. CrossRefGoogle Scholar
  36. Kunstler G, Curt T, Lepart J (2004) Spatial pattern of beech (Fagus sylvatica L.) and oak (Quercus pubescens Mill.) seedlings in natural pine (Pinus sylvestris L.) woodlands. Eur J For Res 123:331–337. CrossRefGoogle Scholar
  37. Leibold MA, McPeek MA (2006) Coexistence of the niche and neutral perspectives in community ecology. Ecology 87:1399–1410.[1399:COTNAN]2.0.CO;2Google Scholar
  38. Lemmon PE (1956) A spherical densiometer for estimating forest overstory density. For Sci 2:314–320. Google Scholar
  39. Maestre FT, Cortina J (2002) Spatial patterns of surface soil properties and vegetation in a Mediterranean semi-arid steppe. Plant Soil 241:279–291. CrossRefGoogle Scholar
  40. Maestre FT, Cortina J, Bautista S, Bellot J, Vallejo R (2003) Small-scale environmental heterogeneity and spatiotemporal dynamics of seedling establishment in a semiarid degraded ecosystem. Ecosystems 6:630–643. CrossRefGoogle Scholar
  41. Meier ES, Kienast F, Pearman PB, Svenning JC, Thuiller W, Araújo MB, Guisan A, Zimmermann NE (2010) Biotic and abiotic variables show little redundancy in explaining tree species distributions. Ecography 33:1038–1048. CrossRefGoogle Scholar
  42. Messaoud Y, Houle G (2006) Spatial patterns of tree seedling establishment and their relationship to environmental variables in a cold-temperate deciduous forest of eastern North America. Plant Ecol 185:319–331. CrossRefGoogle Scholar
  43. Meyer SE, Pendleton BK (2015) Seedling establishment in a masting desert shrub parallels the pattern for forest trees. Acta Oecol 65–66:1–10. CrossRefGoogle Scholar
  44. Monks A, Kelly D (2006) Testing the resource-matching hypothesis in the mast seeding tree Nothofagus truncata (Fagaceae). Austral Ecol 31:366–375. CrossRefGoogle Scholar
  45. Montiel-Oscura D, Ramírez-Herrera C, Ángeles-Pérez G, López-Upton J, Antonio-López P (2013) Allozyme variation and population size of haya mexicana (Fagus grandifolia subsp. mexicana) in the Sierra Madre Oriental. Rev Fitotec Mex 36:413–420Google Scholar
  46. Nathan R, Muller-Landau HC (2000) Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends Ecol Evol 15:278–285. CrossRefPubMedGoogle Scholar
  47. Nelson AS, Wagner RG (2014) Spatial coexistence of American beech and sugar maple regeneration in post-harvest northern hardwood forests. Ann For Sci 71:781–789. CrossRefGoogle Scholar
  48. Nilsson SG (1985) Ecological and evolutionary interactions between reproduction of beech Fagus sylvatica and seed eating animals. Oikos 44:157–164. CrossRefGoogle Scholar
  49. Offord CA, Meagher PF, Zimmer HC (2014) Growing up or growing out? How soil pH and light affect seedling growth of a relict rainforest tree. AoB Plants 6:1–9. CrossRefGoogle Scholar
  50. Ohkubo T, Tanimoto T, Peters R (1996) Response of Japanese beech (Fagus japonica Maxim.) sprouts to canopy gaps. Vegetatio 124:1–8. CrossRefGoogle Scholar
  51. Övergaard R, Gemmel P, Karlsson M (2007) Effects of weather conditions on mast year frequency in beech (Fagus sylvatica L.) in Sweden. Forestry 80:555–565. CrossRefGoogle Scholar
  52. Pedraza-Pérez RA, Williams-Linera G (2005) Condiciones de microhábitat para la germinación y establecimiento de dos especies de árboles del bosque mesófilo de montaña en México. Agrociencia 39:457–467Google Scholar
  53. Peña L, Amezaga I, Onaindia M (2011) At which spatial scale are plant species composition and diversity affected in beech forests? Ann For Sci 68:1351–1362. CrossRefGoogle Scholar
  54. Pérez-Rodríguez PM (1999) Las hayas de México, monografía de Fagus grandifolia spp. mexicana, 1st edn. Universidad Autónoma Chapingo, Montecillo, Estado de México, MexicoGoogle Scholar
  55. Perry JN (1998) Measures of spatial pattern for counts. Ecology 79:1008–1017.[1008:MOSPFC]2.0.CO;2Google Scholar
  56. Perry JN, Dixon PM (2002) A new method to measure spatial association for ecological count data. Ecoscience 9:133–141. CrossRefGoogle Scholar
  57. Perry JN, Bell ED, Smith RH, Woiwod IP (1996) SADIE: software to measure and model spatial pattern. Asp Appl Biol 46:95–102.[1008:MOSPFC]2.0.CO;2Google Scholar
  58. Perry JN, Winder L, Holland JM, Alston RD (1999) Red-blue plots for detecting clusters in count data. Ecol Lett 2(2):106–113. CrossRefGoogle Scholar
  59. Perry GL, Miller BP, Enright NJ (2006) A comparison of methods for the statistical analysis of spatial point pattern in plant ecology. Plant Ecol 187:59 82–59 82. CrossRefGoogle Scholar
  60. Peters R (1992) Ecology of beech forests in the Northern Hemisphere. Ph. D. thesis, Wageningen Agricultural University, Wageningen, The NetherlandsGoogle Scholar
  61. Peters R (1995) Architecture and development of Mexican beech forest. In: Box EO et al (eds) Vegetation science in forestry. Holland, Kluwer Academic Publishers, Dordrecht, pp 325–343Google Scholar
  62. Peters R (1997) Beech forests. Dordrecht, The Netherlands: Kluwer Academic Publishers,
  63. Peterson CJ, Carson WP, Mccarthy BC, Pickett STA, Peterson CJ, Carson WP, Mccarthy BC, Pickett STA, Microsite STA (1990) Microsite variation and soil dynamics within newly created treefall pits and mounds. Oikos 58:39–46. CrossRefGoogle Scholar
  64. Piovensan G, Adams JM (2001) Masting behaviour in beech: linking reproduction and climatic variation. Can J Bot 79:1039–1047. Google Scholar
  65. Piovensan G, Adams JM (2005) The evolutionary ecology of masting: does the environmental prediction hypothesis also have a role in mesic temperate forests? Ecol Res 20:739–743. CrossRefGoogle Scholar
  66. Queenborough SA, Burslem DFRP, Garwood NC, Burslem P, Garwood C (2007) Neighborhood and community interactions determine the spatial pattern of tropical tree seedling survival. Ecology 88:2248–2258. CrossRefPubMedGoogle Scholar
  67. Rivers M, Beech E, Murphy L, Oldfield S (2016) Magnoliaceae revised and extended. UK: Botanic Gardens Conservation InternationalGoogle Scholar
  68. Roberts-Pichette P, Gillespie L (1999) Terrestrial vegetation biodiversity monitoring protocols. EMAN Occasional Paper Series, Report No. 9. Burlington, Ontario, Canada: Ecological Monitoring Coordinating OfficeGoogle Scholar
  69. Rodríguez-Ramírez EC, Sánchez-González A, Ángeles-Pérez G (2013) Current distribution and coverage of Mexican beech forests Fagus grandifolia subsp. mexicana in Mexico. Endanger Species Res 20:205–216. CrossRefGoogle Scholar
  70. Rodríguez-Ramírez EC, Sánchez-González A, Ángeles-Pérez G (2016) Relationship between vegetation structure and microenvironment in Fagus grandifolia subsp. mexicana forest relicts in Mexico. J Plant Ecol 12:rtw138. CrossRefGoogle Scholar
  71. Rowden A, Robertson A, Allnutt T, Heredia S, Williams-Linera G, Newton AC (2004) Conservation genetics of Mexican beech, Fagus grandifolia var. mexicana. Conserv Genet 5:475–484. CrossRefGoogle Scholar
  72. SEMARNAT (Secretaría del Medio Ambiente y Recursos Naturales) (2010) Norma Oficial Mexicana NOM-059-SEMARNAT-2010. Protección ambiental. Especies nativas de México de flora y fauna silvestres, Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio. Lista de especies en riesgo, Diario Oficial de la Federación. Mexico, Distrito Federal. Available at Accessed 22 June 2016
  73. Shibata M, Tanaka H, Iida S, Abe S, Masaki T, Niitama K, Nakashizuka T (2002) Synchronized annual seed production by 16 principal tree species in a temperate deciduous forest, Japan. Ecology 83:1727–1742.[1727:SASPBP]2.0.CO;2Google Scholar
  74. Snell RS, Huth A, Nabel JEMS, Bocedi G, Travis JMJ, Gravel D, Bugmann H, Gutiérrez AG, Hickler T, Higgins SI, Reineking B, Scherstjanoi M, Zurbriggen N, Lischke H (2014) Using dynamic vegetation models to simulate plant range shifts. Ecography 37(12):1184–1197. CrossRefGoogle Scholar
  75. Sork VL, Bramble J, Sexton O (1993) Ecology of mast fruiting in three species of Missouri oaks, Quercus alba, Quercus rubra & Quercus velutina (Fagaceae). Ecology 74:528–541. CrossRefGoogle Scholar
  76. Szymura TH, Szymurz M, Maciol A (2015) The effect of ecological niche and spatial pattern on the diversity of oak forest vegetation. Plant Ecol Divers 8:505–518. CrossRefGoogle Scholar
  77. Taugourdeau O, Sabatier S (2010) Limited plasticity of shoot preformation in response to light by understorey saplings of common walnut (Juglans regia). AoB Plants 1:1–8. Google Scholar
  78. Téllez-Valdés O, Dávila-Aranda P, Lira-Saade R (2006) The effects of climate change on the long-term conservation of Fagus grandifolia var. mexicana, an important species of the Cloud Forest in Eastern Mexico. Biodivers Conserv 15:1095–1107. CrossRefGoogle Scholar
  79. Tinoco-Rueda JA (2009) Clima y variabilidad climática en los municipios de Hidalgo con presencia de bosque mesófilo de montaña. In: Monterroso-Rivas AI (ed) El bosque mesófilo de montaña en el estado de Hidalgo: perspectiva ecológica frente al cambio climático, Vol. 1. Texcoco, Mexico, Universidad Autónoma Chapingo, pp 71–98Google Scholar
  80. Tomita M, Hirabuki Y, Seiwa K (2002) Post-dispersal changes in the spatial distribution of Fagus crenata seeds. Ecology 83:1560–1565CrossRefGoogle Scholar
  81. Tuomisto H, Ruokolainen L, Ruokolainen K (2012) Modelling niche and neutral dynamics: on the ecological interpretation of variation partitioning results. Ecography 35:961–971. CrossRefGoogle Scholar
  82. Vovides PA, Iglesias CG (1996) Seed germination of Magnolia dealbata Zucc. (Magnoliaceae), an endangered species from Mexico. Hortic Sci 31:877Google Scholar
  83. Wang Y, Camarero JJ, Luo T, Liang E (2012) Spatial patterns of Smith fir alpine treeline on the south-eastern Tibetan Plateau support that contingent local conditions drive recent treeline patterns. Plant Ecol Divers 5:311–321. CrossRefGoogle Scholar
  84. Williams-Linera G (2007) El bosque de niebla del centro de Veracruz: ecología, historia y destino en tiempos de fragmentación y cambio climático. CONABIO–Instituto de Ecología, A.C, Xalapa, Veracruz, MexicoGoogle Scholar
  85. Williams-Linera G, Rowden A, Newton AC (2003) Distribution and stand characteristics of relict populations of Mexican beech (Fagus grandifolia var. mexicana). Biol Conserv 109:27–36. CrossRefGoogle Scholar
  86. Winder L, Alexander CJ, Holland JM, Woolley C, Perry JN (2001) Modelling the dynamic spatio-temporal response of predators to transient prey patches in the field. Ecol Lett 4:568–576. CrossRefGoogle Scholar
  87. Yan Y, Zhang C, Wang Y, Zhao X, von Gadow K (2015) Drivers of seedling survival in a temperate forest and their relative importance at three stages of succession. Ecol Evol 5:4287–4299. CrossRefPubMedPubMedCentralGoogle Scholar
  88. Yuan Z, Gazol A, Wang X, Xing D, Lin F, Bai X, Zhao Y, Li B, Hao Z (2011) What happens below the canopy? Oikos 000:001–009. Google Scholar
  89. Zhang Q, Jiang M, Chen F (2007) Canopy recruitment in the beech (Fagus engleriana) forest of Mt. Shennongjia, Central China. J For Res 12:63–67. CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  • Ernesto Chanes Rodríguez-Ramírez
    • 1
  • Ana Paola Martínez-Falcón
    • 2
  • Isolda Luna-Vega
    • 1
  1. 1.Laboratorio de Biogeografía y Sistemática, Facultad de CienciasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  2. 2.Centro de Investigaciones Biológicas, Instituto de Ciencias Básicas e IngenieríaUniversidad Autónoma del Estado de HidalgoMineral de la ReformaMexico

Personalised recommendations