Modeling sapling distribution over time using a functional predictor in a generalized additive model

  • Daniel Moreno-Fernández
  • Nicole H. Augustin
  • Fernando Montes
  • Isabel Cañellas
  • Mariola Sánchez-González
Original Paper

Abstract

Key message

The effect of adult trees on sapling density distribution during the regeneration fellings is determined in a Pinus sylvestris L. Mediterranean forest using generalized additive models.

Context

Spatial pattern of adult trees determines the number of new individuals after regeneration fellings, which modify the light and air temperature under tree canopy.

Aims

We proposed a novel spatiotemporal model with a functional predictor in a generalized additive model framework to describe nonlinear relationships between the size of the adult trees and the number of saplings of P. sylvestris and to determine if the spatial pattern of the number of saplings remained constant or changed in time.

Methods

In 2001, two plots (0.5 ha) were set up in two phases of regeneration fellings under the group shelterwood method. We mapped the trees and saplings and measured their diameter and height. The inventories were repeated in 2006, 2010, and 2014.

Results

We found a negative association between the diameter of adult trees and number of saplings up to 7–8 m. Beyond these distances, the diameter of adult trees was not associated with the number of saplings. Our results indicate that the spatial pattern of the number of saplings remained quite constant in time.

Conclusion

The generalized additive models are a flexible tool to determine the distance range of inhibition of saplings by adult trees.

Keywords

Edge effect Intra-specific competition Mountain forest Shade tolerance Mediterranean areas 

Notes

Acknowledgements

We wish to thank everybody who participated in the field work, especially Ángel Bachiller, Estrella Viscasillas, and Enrique Garriga. We appreciate the comments made by the referees and the editors of Annals of Forest Science during the revision process. We also thank Adam Collins for revising the English writing.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Ameztegui A, Coll L, Messier C (2015) Modelling the effect of climate-induced changes in recruitment and juvenile growth on mixed-forest dynamics: the case of montane–subalpine Pyrenean ecotones. Ecol Model 313:84–93.  https://doi.org/10.1016/j.ecolmodel.2015.06.029 CrossRefGoogle Scholar
  2. Augustin NH, Mattocks C, Faraway JJ, Greven S, Ness AR (2015) Modelling a response as a function of high-frequency count data: the association between physical activity and fat mass. Stat Methods Med Res 26:1–20.  https://doi.org/10.1177/0962280215595832 CrossRefGoogle Scholar
  3. Augustin NH, Musio M, von Wilpert K, Kublin E, Wood SN, Schumacher M (2009) Modeling spatiotemporal forest health monitoring data. J Am Stat Assoc 104:899–911.  https://doi.org/10.1198/jasa.2009.ap07058 CrossRefGoogle Scholar
  4. Barbeito I, Dawes MA, Rixen C, Senn J, Bebi P (2012) Factors driving mortality and growth at treeline: a 30-year experiment of 92 000 conifers. Ecology 93:389–401.  https://doi.org/10.1890/11-0384.1 CrossRefPubMedGoogle Scholar
  5. Barbeito I, Fortin M-J, Montes F, Cañellas I (2009) Response of pine natural regeneration to small-scale spatial variation in a managed Mediterranean mountain forest. Appl Veg Sci 12:488–503.  https://doi.org/10.1111/j.1654-109X.2009.01043.x CrossRefGoogle Scholar
  6. Barbeito I, LeMay V, Calama R, Cañellas I (2011) Regeneration of Mediterranean Pinus sylvestris under two alternative shelterwood systems within a multiscale framework. Can J For Res 41:341–351.  https://doi.org/10.1139/X10-214 CrossRefGoogle Scholar
  7. Caccia FD, Ballaré CL (1998) Effects of tree cover, understory vegetation, and litter on regeneration of Douglas-fir (Pseudotsuga menziesii) in southwestern Argentina. Can J For Res 28:683–692.  https://doi.org/10.1139/cjfr-28-5-683 CrossRefGoogle Scholar
  8. Castro J, Zamora R, Hodar JA, Gomez JM (2004) Seedling establishment of a boreal tree species (Pinus sylvestris) at its southernmost distribution limit: consequences of being in a marginal Mediterranean habitat. J Ecol 92:266–277.  https://doi.org/10.1111/j.0022-0477.2004.00870.x CrossRefGoogle Scholar
  9. Castro J, Zamora R, Hódar JA, Gómez JM (2005) Alleviation of summer drought boosts establishment success of Pinus sylvestris in a Mediterranean mountain: an experimental approach. Plant Ecol 181:191–202.  https://doi.org/10.1007/s11258-005-6626-5 CrossRefGoogle Scholar
  10. Comas C (2008) Modelling forest regeneration strategies through the development of a spatio-temporal growth interaction model. Stoch Env Res Risk A 23:1089–1102.  https://doi.org/10.1007/s00477-008-0282-y CrossRefGoogle Scholar
  11. Contreras MA, Affleck D, Chung W (2011) Evaluating tree competition indices as predictors of basal area increment in western Montana forests. For Ecol Manag 262:1939–1949.  https://doi.org/10.1016/j.foreco.2011.08.031 CrossRefGoogle Scholar
  12. Duchon J (1977) Splines minimizing rotation-invariant semi-norms in Sobolev spaces. In: Schempp W, Zeller K (eds) Constructive theory of functions of several variables: proceedings of a conference held at Oberwolfach April 25 -- May 1, 1976. Springer, Berlin Heidelberg, pp 85–100.  https://doi.org/10.1007/BFb0086566 CrossRefGoogle Scholar
  13. Eerikäinen K, Miina J, Valkonen S (2007) Models for the regeneration establishment and the development of established seedlings in uneven-aged, Norway spruce dominated forest stands of southern Finland. For Ecol Manag 242:444–461.  https://doi.org/10.1016/j.foreco.2007.01.078 CrossRefGoogle Scholar
  14. Falster DS, Westoby M (2003) Plant height and evolutionary games. TRENDS Ecol Evol 18:337–342.  https://doi.org/10.1016/S0169-5347(03)00061-2 CrossRefGoogle Scholar
  15. Faraway JJ (2006) Extending the linear model with R: generalized linear, mixed effects and nonparametric regression modelsGoogle Scholar
  16. Franklin J (1998) Predicting the distribution of shrub species in southern California from climate and terrain-derived variables. J Veg Sci 9:733–748.  https://doi.org/10.2307/3237291 CrossRefGoogle Scholar
  17. Getzin S, Dean C, He F,A, Trofymow J, Wiegand K, Wiegand T (2006) Spatial patterns and competition of tree species in a Douglas fir chronosequence on Vancouver Island. Ecography (Cop) 29:671–682.  https://doi.org/10.1111/j.2006.0906-7590.04675.x CrossRefGoogle Scholar
  18. Gómez-Aparicio L, Valladares F, Zamora R (2006) Differential light responses of Mediterranean tree saplings: linking ecophysiology with regeneration niche in four co-occurring species. Tree Physiol 26:947–958.  https://doi.org/10.1093/treephys/26.7.947 CrossRefPubMedGoogle Scholar
  19. González-Martínez SC, Bravo F (2001) Density and population structure of the natural regeneration of Scots pine (Pinus sylvestris L.) in the high Ebro Basin (northern Spain). Ann For Sci 58:277–288.  https://doi.org/10.1051/forest:2001126 CrossRefGoogle Scholar
  20. Goreaud F, Pélissier R (1999) On explicit formulas of edge effect correction for Ripley’s K -function. J Veg Sci 10:433–438.  https://doi.org/10.2307/3237072 CrossRefGoogle Scholar
  21. Hanewinkel M, Pretzsch H (2000) Modelling the conversion from even-aged to uneven-aged stands of Norway spruce (Picea abies L. Karst.) with a distance-dependent growth simulator. For Ecol Manag 134:55–70.  https://doi.org/10.1016/S0378-1127(99)00245-5 CrossRefGoogle Scholar
  22. Hastie T, Tibshirani R (1989) Generalized additive models. Stat Sci 10:297–318.  https://doi.org/10.1214/ss/1177013604 Google Scholar
  23. Houston Durrant T, de Rigo D, Caudullo G (2016) Pinus sylvestris in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, de Rigo D, Caudullo G et al (eds) European atlas of Forest tree species. Publication Office of the European Union, LuxembourgGoogle Scholar
  24. Hyppönen M, Hallikainen V, Niemelä J, Rautio P (2013) The contradictory role of understory vegetation on the success of Scots pine regeneration. Silva Fenn 47:1–19CrossRefGoogle Scholar
  25. Jordan L, Clark A, Schimleck LR, Hall DB, Daniels RF (2008) Regional variation in wood specific gravity of planted loblolly pine in the United States. Can J For Res 38:698–710.  https://doi.org/10.1139/X07-158 CrossRefGoogle Scholar
  26. Kobe RK, Coates KD (1997) Models of sapling mortality as a function of growth to characterize interspecific variation in shade tolerance of eight tree species of northwestern British Columbia. Can J For Res 27:227–236.  https://doi.org/10.1139/x96-182 CrossRefGoogle Scholar
  27. Kozlowski TT (2002) Physiological ecology of natural regeneration of harvested and disturbed forest stands: implications for forest management. For Ecol Manag 158:195–221.  https://doi.org/10.1016/S0378-1127(00)00712-X CrossRefGoogle Scholar
  28. Lancaster J, Downes BJ (1998) Spatial point pattern analysis of available and exploited resources. Ecography (Cop) 27:94–102CrossRefGoogle Scholar
  29. Ledo A, Cañellas I, Barbeito I, Gordo FJ, Calama RA, Gea-Izquierdo G (2014) Species coexistence in a mixed Mediterranean pine forest: spatio-temporal variability in trade-offs between facilitation and competition. For Ecol Manag 322:89–97.  https://doi.org/10.1016/j.foreco.2014.02.038 CrossRefGoogle Scholar
  30. Ledo A, Cayuela L, Manso R, Condés S (2015) Recruitment patterns and potential mechanisms of community assembly in an Andean Cloud Forest. J Veg Sci 26:876–888.  https://doi.org/10.1111/jvs.12287 CrossRefGoogle Scholar
  31. LeMay V, Pommerening A, Marshall P (2009) Spatio-temporal structure of multi-storied, multi-aged interior Douglas fir (Pseudotsuga menziesii var. glauca) stands. J Ecol 97:1062–1074.  https://doi.org/10.1111/j.1365-2745.2009.01542.x CrossRefGoogle Scholar
  32. Manso R, Fortin M, Calama R, Pardos M (2013) Modelling seed germination in forest tree species through survival analysis: the Pinus pinea L. case study. For Ecol Manag 289:515–524.  https://doi.org/10.1016/j.foreco.2012.10.028 CrossRefGoogle Scholar
  33. Manso R, Pukkala T, Pardos M, Miina J, Calama R (2014) Modelling Pinus pinea forest management to attain natural regeneration under present and future climatic scenarios. Can J For Res 44:250–262.  https://doi.org/10.1139/cjfr-2013-0179 CrossRefGoogle Scholar
  34. Maseda PH, Fernández RJ (2006) Stay wet or else: three ways in which plants can adjust hydraulically to their environment. J Exp Bot 57:3963–3977.  https://doi.org/10.1093/jxb/erl127 CrossRefPubMedGoogle Scholar
  35. Mason W, Alía R (2000) Current and future status of Scots pine (Pinus sylvestris L.) forests in Europe. Investig Agrar Sist y Recur For Fuera de s:317–335Google Scholar
  36. Mátyás C, Ackzell L, Samuel C (2003) EUFORGEN technical guidelines for genetic conservation and use for Scots pine (Pinus sylvestris)Google Scholar
  37. McDonald RI, Peet RK, Urban DL (2003) Spatial pattern of Quercus regeneration limitation and Acer rubrum invasion in a Piedmont forest. J Veg Sci 14:441–450. https://doi.org/10.1658/1100-9233(2003)014[0441:SPOQRL]2.0.CO;2Google Scholar
  38. McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739.  https://doi.org/10.1111/j.1469-8137.2008.02436.x CrossRefPubMedGoogle Scholar
  39. Miina J, Heinonen J (2008) Stochastic simulation of forest regeneration establishment using a multilevel multivariate model. For Sci 54:206–219.  https://doi.org/10.1016/j.csda.2012.08.006 Google Scholar
  40. Montes F, Cañellas I (2007) The spatial relationship between post-crop remaining trees and the establishment of saplings in Pinus sylvestris stands in Spain. Appl Veg Sci 10:151. https://doi.org/10.1658/1402-2001(2007)10[151:TSRBPR]2.0.CO;2CrossRefGoogle Scholar
  41. Moreno-Fernández D, Cañellas I, Barbeito I, Sánchez-González M, Ledo A (2015a) Alternative approaches to assessing the natural regeneration of Scots pine in a Mediterranean forest. Ann For Sci 72:569–583.  https://doi.org/10.1007/s13595-015-0479-4 CrossRefGoogle Scholar
  42. Moreno-Fernández D, Díaz-Pinés E, Barbeito I, Sánchez-González M, Montes F, Rubio A, Cañellas I (2015b) Temporal carbon dynamics over the rotation period of two alternative management systems in Mediterranean mountain Scots pine forests. For Ecol Manag 348:186–195.  https://doi.org/10.1016/j.foreco.2015.03.043 CrossRefGoogle Scholar
  43. Moreno-Fernández D, Sánchez-González M, Álvarez-González JG, Hevia A, Majada JP, Cañellas I, Gea-Izquierdo G (2014) Response to the interaction of thinning and pruning of pine species in Mediterranean mountains. Eur J For Res 133:833–843.  https://doi.org/10.1007/s10342-014-0800-z CrossRefGoogle Scholar
  44. Pardos M, Montes F, Aranda I, Cañellas I (2007) Influence of environmental conditions on germinant survival and diversity of Scots pine (Pinus sylvestris L.) in central Spain. Eur J For Res 126:37–47.  https://doi.org/10.1007/s10342-005-0090-6 CrossRefGoogle Scholar
  45. Perry GLW, Miller BP, Enright NJ (2006) A comparison of methods for the statistical analysis of spatial point patterns in plant ecology. Plant Ecol 187:59–82.  https://doi.org/10.1007/s11258-006-9133-4 CrossRefGoogle Scholar
  46. Pommerening A, Stoyan D (2006) Edge-correction needs in estimating indices of spatial forest structure. Can J For Res 36:1723–1739.  https://doi.org/10.1139/X06-060 CrossRefGoogle Scholar
  47. Rabasa SG, Granda E, Benavides R, Kunstler G, Espelta JM, Ogaya R, Peñuelas J, Scherer-Lorenzen M, Gil W, Grodzki W, Ambrozy S, Bergh J, Hódar JA, Zamora R, Valladares F (2013) Disparity in elevational shifts of European trees in response to recent climate warming. Glob Chang Biol 19:2490–2499.  https://doi.org/10.1111/gcb.12220 CrossRefPubMedGoogle Scholar
  48. R Core Team (2017) R: a language and environment for statistical computingGoogle Scholar
  49. Redenbach C, Särkkä A (2012) Parameter estimation for growth interaction processes using spatio-temporal information. Comput Stat Data Anal 57:672–683CrossRefGoogle Scholar
  50. Renshaw E, Särkkä A (2001) Gibbs point processes for studying the development of spatial-temporal stochastic processes. Comput Stat Data Anal 36:85–105.  https://doi.org/10.1016/S0167-9473(00)00028-1 CrossRefGoogle Scholar
  51. Ribeiro PJ, Diggle PJ (2016) geoR: analysis of geostatistical data. www.leg.ufpr.br/geoR
  52. Ritchie J (1981) Soil water availability. Plant Soil 58:357–338Google Scholar
  53. Rodríguez-García E, Bravo F, Spies TA (2011) Effects of overstorey canopy, plant-plant interactions and soil properties on Mediterranean maritime pine seedling dynamics. For Ecol Manag 262:244–251.  https://doi.org/10.1016/j.foreco.2011.03.029 CrossRefGoogle Scholar
  54. Rodríguez-García E, Juez L, Bravo F (2010) Environmental influences on post-harvest natural regeneration of Pinus pinaster Ait. in Mediterranean forest stands submitted to the seed-tree selection method. Eur J For Res 129:1119–1128.  https://doi.org/10.1007/s10342-010-0399-7 CrossRefGoogle Scholar
  55. Valladares F, Niinemets Ü (2008) Shade tolerance, a key plant feature of complex nature and consequences. Annu Rev Ecol Evol Syst 39:237–257.  https://doi.org/10.1146/annurev.ecolsys.39.110707.173506 CrossRefGoogle Scholar
  56. Vanclay JK (1992) Modelling regeneration and recruitment in a tropical rain forest. Can J For Res 22:1235–1248.  https://doi.org/10.1139/x92-165 CrossRefGoogle Scholar
  57. Wada N, Ribbens E (1997) Japanese maple (Acer palmatum var. matsumurae, Aceraceae) recuitment patterns: seeds,seedlings and salings in relation to conspecific adult neighbors. Oikos 84:1294–1300Google Scholar
  58. Wild J, Kopecký M, Svoboda M, Zenáhlíková J, Edwards-Jonášová M, Herben T (2014) Spatial patterns with memory: tree regeneration after stand-replacing disturbance in Picea abies mountain forests. J Veg Sci 25:1327–1340.  https://doi.org/10.1111/jvs.12189 CrossRefGoogle Scholar
  59. Williams H, Messier C, Kneeshaw DD (1999) Effects of light availability and sapling size on the growth and crown morphology of understory Douglas-fir and lodgepole pine. Can J For Res 29:222–231.  https://doi.org/10.1139/x98-189 CrossRefGoogle Scholar
  60. Wolf A (2005) Fifty year record of change in tree spatial patterns within a mixed deciduous forest. For Ecol Manag 215:212–223.  https://doi.org/10.1016/j.foreco.2005.05.021 CrossRefGoogle Scholar
  61. Wood SN (2003) Thin-plate regression splines. J R Stat Soc 65:95–114.  https://doi.org/10.1111/1467-9868.00374 CrossRefGoogle Scholar
  62. Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc Ser B Stat Methodol 73:3–36.  https://doi.org/10.1111/j.1467-9868.2010.00749.x CrossRefGoogle Scholar
  63. Wood SN (2006) Generalized additive models: an introduction with R. CRC Press, Boca RatonGoogle Scholar

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  1. 1.INIA-CIFORMadridSpain
  2. 2.MONTES (School of Forest Engineering and Natural Resources)Universidad Politécnica de MadridMadridSpain
  3. 3.Department of Mathematical SciencesUniversity of BathBathUK

Personalised recommendations