Skip to main content

Variation in log quality and prediction of sawing yield in oak wood (Quercus robur)

Abstract

Context

The commercial feasibility of sawmilling depends on the expected volume and value of sawn planks. Models that predict the volume of sawn timber of a particular quality and produced from logs of known characteristics are therefore very useful.

Aims

The objectives were to study variation in sawing yield and to obtain models that predict lumber volume and grade recovery on the basis of easy-to-measure predictor variables of saw logs.

Methods

Forty-six oak trees growing in Galicia (NW Spain) were felled and cut into logs. The logs were visually graded and sawn mainly into quartersawn planks, which were dried, planed and visually graded for structural purposes.

Results

The total volumetric sawing yield was 47.6 %. The sawing yield for planks of structural dimensions (cross-section, 70 × 120 or 70 × 170 mm) was 43.4 %, but decreased to 8.4 % for structural sized and quality grade beams because of wane and biotic damage in many pieces. Log grade did not significantly affect sawing yield in the sample analysed, despite the wide range of diameter over bark at the smallest end in the sampled logs (22–77 cm). The sawing pattern affected total sawing yield (F = 4.913; p value = 0.001) and the sawing yield for structural planks (F = 6.142; p value = 0.0002); radial sawing with one cut and live sawing of half logs provided the highest yields. Three models were proposed for estimating sawn volume in timber products, with the small-end log diameter over bark as the predictor variable and R 2adj between 0.31 and 0.78 (p value < 0.01).

Conclusion

For the purpose of producing oak timber destined for structural use, the presence of bark and sapwood in planks must be reduced in the sawing process; this would decrease the total lumber recovery but increase the timber value yield. Air drying must be accelerated to reduce biotic damage in sawn planks. Geometric mean diameter over bark at the smallest end (d) outperforms other measures as a predictor variable for total or structural sawn timber volume.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Alder D (1980) Forest volume estimation and yield prediction (vol. II). Forestry Paper 22/2. FAO, Rome

  2. Área de Inventario y Estadísticas Forestales (2011) Cuarto Inventario Forestal Nacional. Galicia. Ministerio de Medio Ambiente y Medio Rural y Marino, Xunta de Galicia, Madrid, pp 12–25

  3. Bartoli M, Keller R (1994) Marché et commerce du bois de chêne rouge en France. In: Timbal J, Kremer A, Le Golf N, Nepveu G (eds) Le chêne rouge d'Amérique. Institut National de la Recherche Agronomique, Paris, pp 348–352

    Google Scholar 

  4. Bary-Lenger A, Nebout JP (1993) Les chênes pédonculé et sessile en France et en Belgique. Gerfault Club. Editions du Perron, Alleur-Liège, pp 120–173

    Google Scholar 

  5. Baylot J, Vautherin P (1992) Classement des bois ronds feuillus. CTBA, Paris

    Google Scholar 

  6. Bues CT, Schulz H (1990) Festigkeit und Feuchtegehalt von Eichenholz aus Waldschadensgebieten. Holz als Roh-und Werkst 48:85–89

    Article  Google Scholar 

  7. Collardet J, Besset J (1992) Bois commerciaux (vol. II). Feuillus des zones tempérées. H Vial and CTBA, France

  8. Deret-Varcin E (1983) Etude comparative de la qualité du bois de trois types de chênes (rouvres, pédonculés et intermédiaires), en forêt de Morimond. Ann Sci For 40:373–398

    Article  Google Scholar 

  9. Hamner P, White M, Araman P (2007) The frequency and level of sweep in mixed hardwood saw logs in the eastern United States. For Prod J 57:23–27

    Google Scholar 

  10. Harless TEG, Wagner FG, Steele PH, Taylor FW, Yadama V, McMillin CW (1991) Methodology for locating defects within hardwood logs and determining their impact on timber-value yield. For Prod J 41:25–30

    Google Scholar 

  11. Huang S, Yang Y, Wang Y (2003) A critical look at procedures for validating growth and yield models. In: Amaro A, Reed D, Soares P (eds) Modelling forest systems. CAB, Wallingford, UK, pp 271–293

    Google Scholar 

  12. Johansson J (2008) Mechanical processing for improved products made from Swedish hardwoods. Acta Wexionensia No 157/2008. Thesis, Växjö University, Göteborg

  13. Kozak A, Kozak R (2003) Does cross validation provide additional information in the evaluation of regression models? Can J For Res 33:976–987

    Article  Google Scholar 

  14. Lanvin JD, Reuling D, Costrel Y, Ducerf J (2007) Evaluation of French oak for structural use. In: 1st International Scientific Conference on Hardwood Processing, Québec City, pp 61–65

  15. Lin W, Kline DE, Araman PA (1994) Dimension yields from factory grade 2 and 3 red oak logs. For Prod J 44:19–25

    Google Scholar 

  16. Longuetaud F, Mothe F, Kerautret B, Krähenbühl A, Hory L, Leban JM, Debled-Rennesson I (2012) Automatic knot detection and measurements from X-ray CT images of wood: a review and validation of an improved algorithm on softwood samples. Comput Electron Agric 85:77–89

    Article  Google Scholar 

  17. Mayer-Wegelin H (1951) Die Holzeigenschaften von Sumpfeiche, Roteiche und Stieleiche des Schaumburger Waldes. Forst und Holz 20:290–292

    Google Scholar 

  18. Ministerio de Agricultura, Alimentación y Medio Ambiente (2010) Anuario de Estadística Forestal 2010. Ministerio de Agricultura, Alimentación y Medio Ambiente, Madrid pp 13–46

  19. Nylinder M, Woxblom L (2005) Industrial utilization of hardwood in Sweden. Paper presented within COST Action E42: Growing Valuable Broadleaved Tree Species

  20. Pardé J, Bouchon J (1988) Dendrométrie (2nd ed.). ENGREF, Nancy

  21. Pastor JC, Salgado M (1999) El fomento de la transformación de productos forestales en Galicia. In: Proceedings of the Congreso de Ordenación y Gestión Sostenible de Montes, Santiago de Compostela, vol II, pp 329–336

  22. Pretzsch H, Biber P, Ïurský J, Von Gadow K, Hasenauer H, Kändler G, Kenk G, Kublin E, Nagel J, Pukkala T, Skovsgaard JP, Sodtke R, Sterba H (2002) Recommendations for standardized documentation and further development of forest growth simulators. Forstw Cbl 121:138–151

    Article  Google Scholar 

  23. Riesco Muñoz G (2001) Estudio de las propiedades físico-mecánicas de la madera de roble (Quercus robur L.) de Galicia en relación con las variables del medio. Thesis, Universidad Politécnica de Madrid, Madrid

  24. Riesco Muñoz G, Remacha Gete A, Pedras Saavedra F (2011) Implications in the design of a method for visual grading and mechanical testing of hardwood structural timber for designation within the European strength classes. Forest Systems 20:235–244. doi:10.5424/fs//fs/2011202-9771

    Google Scholar 

  25. Rodríguez-Campos A, Díaz-Maroto IJ, Barcala-Pérez E, Vila-Lameiro P (2010) Comparison of the autoecology of Quercus robur L. and Q. petraea (Mattuschka) Liebl. stands in the Northwest of the Iberian Peninsula. Ann For Res 53:7–25

    Google Scholar 

  26. Sandberg D (2005) Radially sawn timber—the Primwood method for improved properties. Holz als Roh-und Werkst 63:94–101

    Article  Google Scholar 

  27. Skuratov NV (2008) Intelligent wood drying control: problems and decisions. Dry Technol 26:585–589

    Article  Google Scholar 

  28. Steele PH, Shi R, Wagner FG (1989) Estimation of best opening face position for asymmetric sawing patterns in hardwood logs. For Prod J 39:15–20

    Google Scholar 

  29. Steele PH, Wagner FG, Kumar L, Araman PA (1993) The value versus volume yield problem for live-sawn hardwood sawlogs. For Prod J 43:35–40

    Google Scholar 

  30. Thomas RE (1999) ROMI-RIP version 2.0: a new analytical tool for rip-first rough mill operations. For Prod J 49:35–40

    Google Scholar 

  31. Tuset R, Durán F (1986) Manual de maderas comerciales, equipos y procesos de utilización. Hemisferio Sur, Montevideo

    Google Scholar 

  32. Von Gadow K, Hui G (1999) Modelling forest development. Kluwer, Dordrecht

    Book  Google Scholar 

  33. Wagenführ R (2007) Holzatlas. Fachbuchverlag, Leipzig

    Google Scholar 

  34. Wei Q, Leblon B, La Rocque A (2011) On the use of X-ray computed tomography for determining wood properties: a review. Can J For Res 41:2120–2140

    Article  Google Scholar 

  35. Yang Y, Monserud RA, Huang S (2004) An evaluation of diagnostic tests and their roles in validating forest biometrics models. Can J For Res 34:619–629

    Article  Google Scholar 

  36. Zuur A, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Meth Ecol Evol 1:3–14

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Xunta de Galicia and the Research Office of the Universidad de Santiago de Compostela for providing financial support for the project

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guillermo Riesco Muñoz.

Additional information

The three authors have contributed equally in the study.

Handling Editor: Jean-Michel Leban

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Riesco Muñoz, G., Remacha Gete, A. & Gasalla Regueiro, M. Variation in log quality and prediction of sawing yield in oak wood (Quercus robur). Annals of Forest Science 70, 695–706 (2013). https://doi.org/10.1007/s13595-013-0314-8

Download citation

Keywords

  • Oak wood
  • Sawing yield
  • Structural timber
  • Log quality