Assessing changes in species distribution from sequential large-scale forest inventories



It is assumed that global change is already affecting the composition, structure and distribution of forest ecosystems; however, detailed evidences of altitudinal and latitudinal shifts are still scarce.


To develop a method based on National Forest Inventory (NFI) to assess spatio-temporal changes in species distributions.


We develop an approach based on universal kriging to compare species distribution models from the different NFI cycles and regardless of the differences in the sampling schemes used. Furthermore, a confidence interval approach is used to assess significant changes in species distribution. The approach is applied to some of the southernmost populations of Pinus sylvestris and Fagus sylvatica in the Western Pyrenees over the last 40 years.


An increase of the presence of the two species in the region was observed. Scots pine distribution has shifted about 1.5 km northwards over recent decades, whereas the European beech has extended its distribution southwards by about 2 km. Furthermore, the optimum altitude for both species has risen by about 200 m. As a result, the zone in which the two species coexist has been enlarged.


This approach provides a useful tool to compare NFI data from different sampling schemes, quantifying and testing significant shifts in tree species distribution over recent decades across geographical gradients.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1:95–111

    PubMed Central  Article  Google Scholar 

  2. Alpert P, Krichak S, Shafir H, Haim D, Osentinsky I (2008) Climatic trends to extremes employing regional modelling and statistical interpretation over the E. Mediterranean Glob Planet Change 63:163–170

    Article  Google Scholar 

  3. Bellehumeur C, Legendre P (1998) Multiscale sources of variation in ecological variables: modelling spatial dispersion, elaborating sampling designs. Landscape Ecol 13:15–25

    Article  Google Scholar 

  4. Benito Garzón M, Sánchez de Dios R, Sainz Ollero H (2008) Effects of climate change on the distribution of Iberian tree species. Appl Veg Sci 11:169–178

    Article  Google Scholar 

  5. Costa M, Morla C, Sainz H (eds) (1997) Los bosques ibéricos. Una interpretación geobotánica. Planeta, Barcelona

    Google Scholar 

  6. Cressie NAC (1993) Statistics for spatial data. Wiley, New York

    Google Scholar 

  7. Deutsch CV, Journel AG (1992) GSLIB geostatistical software library and user’s guide. Oxford University Press, London, p 340

    Google Scholar 

  8. Engler R, Randin CF, Thuiller W, Dullinger S, Zimmermann NE, Araújo MB, Pearman PB, Le Lay G, Piedallu C, Albert CH, Choler P, Coldea G, De Lamo X, Dirnböck T, Gégout JC, Gómez-García D, Grytnes JA, Heegaard E, Høistad F, Nogués-Bravo D, Normand S, Puşcaş M, Sebastià MT, Stanisci A, Theurillat JP, Trivedi MR, Vittoz P, Guisan A (2011) 21st century climate change threatens mountain flora unequally across Europe. Glob Change Biol 17:2330–2341

    Article  Google Scholar 

  9. FAO (Food and Agriculture Organization of the United Nations) (2000) Global forest resources assessment. FAO Forestry Paper 140. Rome

  10. Gellrich M, Zimmermann NE (2007) Investigating the regional-scale pattern of agricultural land abandonment in the Swiss mountains: a spatial statistical modelling approach. Landscape Urban Plan 79:65–76

    Article  Google Scholar 

  11. Gimmi U, Wohlgemuth T, Rigling A, Hoffmann CW, Bürgi M (2010) Land-use and climate change effects in forest compositional trajectories in a dry Central-Alpine valley. Ann For Sci 67:701

    Article  Google Scholar 

  12. Goovaerts P (1994) Comparison of CoIK, IK and mIK performances for modeling conditional probabilities of categorical variables. In: Dimitrakopoulos R (ed) Geostatistics for the next century. Kluwer, Dordrecht, pp 18–29

    Google Scholar 

  13. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  14. Isaaks EH, Srivastava RM (1989) Applied geostatistics. Oxford University Press, New York

    Google Scholar 

  15. Jump AS, Mátyás CA, Peñuelas J (2009) The altitude-for-latitude disparity in the range retractions of woody species. Tree 24:694–701

    PubMed  Google Scholar 

  16. Katz RW (1992) Role of statistics in the validation of general circulation models. Clim Res 2:35–45

    Article  Google Scholar 

  17. Kräuchi N, Kienast F (1993) Modelling subalpine forest dynamics as influenced by a changing environment. Water Air Soil Pollut 68:185–197

    Article  Google Scholar 

  18. Lenoir J, Gégout JC, Marquet PA, de Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768–1771

    CAS  PubMed  Article  Google Scholar 

  19. Loiselle BA, Howell CA, Graham CH, Goerck JM, Brooks T, Smith KG, And Williams PH (2003) Avoiding pitfalls of using species distribution models in conservation planning. Cons Biol 17:1591–1600

    Article  Google Scholar 

  20. Mandallaz D (2000) Estimation of the spatial covariance in universal kriging: application to forest inventory. Environ Ecol Stat 7:263–284

    Article  Google Scholar 

  21. Matheron G (1969) Le krigeage Universel. Cahiers du Centre de Morphologie Mathematique, 1. Fontainebleau, France

  22. Miller J, Franklin J, Aspinall R (2007) Incorporating spatial dependence in predictive vegetation models. Ecol Model 202:225–242

    Article  Google Scholar 

  23. Miller J, Hanham RQ (2011) Spatial nonstationarity and the scale of species-environment relationships in the Mojave Desert, California, USA. Int J Geogr Inf Sci 25:423–438

    Article  Google Scholar 

  24. Montes F, Hernández MJ, Cañellas I (2005) A geostatistical approach to cork production sampling estimation in Quercus suber L. forests. Can J For Res 35:2787–2796

    Article  Google Scholar 

  25. Montes F, Ledo A (2010) Incorporating environmental and geographical information in forest data analysis: a new fitting approach for universal kriging. Can J For Res 40:1852–1861

    Article  Google Scholar 

  26. Ninyerola M, Pons X, Roure JM (2005) Atlas Climático Digital de la Península Ibérica.

  27. Osborne PE, Foody GM, Suárez-Seoane S (2007) Non-stationarity and local approaches to modeling the distributions of wildlife. Divers Distrib 13:313–323

    Article  Google Scholar 

  28. Peñuelas J, Boada M (2003) A global change-induced biome shift in the Montseny mountains (NE Spain). Glob Change Biol 9:131–140

    Article  Google Scholar 

  29. Poljanec A, Ficko A, Boncina A (2010) Spatio-temporal dynamic of European beech (Fagus sylvatica L.) in Slovenia, 1970–2005. For Ecol Manage 259:2183–2190

    Article  Google Scholar 

  30. Rodríguez AE, Obeso JR (2000) Diet of the Cantabrian capercaillie: geographic variation and energetic content. Ardeola 47:77–83

    Google Scholar 

  31. Segurado P, Araújo MB (2004) An evaluation of methods for modelling species distributions. J Biogeog 31:1555–1568

    Article  Google Scholar 

  32. Thuiller W, Vayreda J, Pino J, Sabate S, Lavorel S, Gracia C (2003) Large-scale environmental correlates of forest tree distribution in Catalonia (NE Spain). Global Ecol Biogeogr 12:313–325

    Article  Google Scholar 

  33. Tolosana-Delgado R, Pawlowsky-Glahn V, Egozcue JJ (2008) Indicator kriging without order relation violations. Math Geosci 40:327–347

    Article  Google Scholar 

  34. Vilá-Cabrera A, Martínez-Vilalta J, Vayreda J, Retana J (2011) Structural and climatic determinants of demographic rates of Scots pine forests across the Iberian Peninsula. Ecol Appl 21:1162–1172

    PubMed  Article  Google Scholar 

  35. Williams MS (2001) New approach to areal sampling in ecological surveys. For Ecol Manage 154:11–22

    Article  Google Scholar 

  36. Yoo EH, Trgovac AB (2011) Scale effects in uncertainty modeling of presettlement vegetation distribution. Int J Geogr Inf Sci 25:405–421

    Article  Google Scholar 

Download references


The authors wish to thank all the staff that makes possible the development of the NFI but especially Roberto Vallejo, Head of the Spanish National Forest Inventory, and Dr. Aitor Gastón (E.T.I Forestales), for kindly providing access to the full Spanish NFI data sets. The authors thank Adam Collins for the careful English language revision.


This research was supported by the AEG-09-007 agreement from the Spanish Ministry of Agriculture, Food and Environment (MAGRAMA) and the AGL2010-21153.00.01 project funded by the Spanish Ministry of Science and Innovation (MICINN). F. Montes held a Ramon y Cajal research grant, financed by the MICINN.

Author information



Corresponding author

Correspondence to Laura Hernández.

Additional information

Contribution of the co-authors

Isabel Cañellas coordinated the associate research projects. Iciar Alberdi provided access to all NFI databases. Fernando Montes and Laura Hernández conceived, designed and run the data analysis. Fernando Montes also supervised the work. Laura Hernández conducted manuscript writing. Fernando Montes, Isabel Cañellas, Iciar Alberdi and Iván Torres conducted manuscript reviewing.

Handling Editor: Erwin Dreyer

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hernández, L., Cañellas, I., Alberdi, I. et al. Assessing changes in species distribution from sequential large-scale forest inventories. Annals of Forest Science 71, 161–171 (2014).

Download citation


  • National Forest Inventory
  • Universal kriging
  • Shifts
  • Pinus sylvestris
  • Fagus sylvatica
  • Pyrenees