Composite micronutrient nanoparticles and salts decrease drought stress in soybean

  • Christian O. Dimkpa
  • Prem S. Bindraban
  • Job Fugice
  • Sampson Agyin-Birikorang
  • Upendra Singh
  • Deborah Hellums
Research Article
Part of the following topical collections:
  1. Fertilisation


Drought decreases crop productivity, with economic consequences for farmers. For soybean, drought particularly affects the reproductive phase. There is therefore a need for strategies that minimize drought effects, such as agronomic fortification with micronutrients. Here, we evaluated the mitigation of drought stress in soybean using composite formulations of three micronutrient nanoparticles, ZnO, B2O3, and CuO, and their salts: ZnSO4·7H2O, H3BO3, and CuSO4·5H2O, in a greenhouse. The micronutrients were soil or foliar applied 3 weeks after seed germination. Drought was imposed at 50% field moisture capacity. We measured parameters related to growth, yield, and nutrient uptake dynamics during 19 weeks. Results show that drought decreased soybean shoot growth by 27% and grain yield by 54%. Application of salt formulations to soil was more effective than foliar application, in mitigating drought stress. For foliar application, the effects of nanoparticles and salts were similar. On average, the formulations reduced drought effects by increasing shoot growth by 33% and grain yield by 36%. On average, the formulations increased shoot N by 28%, K by 19%, Zn by 1080%, B by 74%, and Cu by 954%. Likewise, the formulations, on average, increased grain N by 35%, K by 32%, Zn by 68%, B by 56%, and Cu by 13%. In contrast, drought did not alter shoot P, but the formulations, on average, reduced shoot P by 33%. Whereas micronutrient salts are known to reduce drought effects in plants, our findings demonstrate for the first time a novel use of micronutrient nanoparticles to boost crop performance and N and P uptake under drought stress.


Agronomic fortification Climate-smart fertilization Drought Micnobits Micronutrients NPK Nanofertilizers Nutrient uptake dynamics 


  1. Al-Kaisi MM, Elmore RW, Guzman JG, Hanna HM, Hart CE, Helmers MJ, Hodgson EW, Lenssen AW, Mallarino AP, Robertson AE, Sawyer JE (2013) Drought impact on crop production and the soil environment: 2012 experiences from Iowa. J Soil Water Conserv 68:1. doi:10.2489/jswc.68.1.19A CrossRefGoogle Scholar
  2. Ashraf MY, Iqbal N, Ashraf M, Akhter J (2014) Modulation of physiological and biochemical metabolites in salt stressed rice by foliar application of zinc. J Plant Nutr 37:447–457. doi:10.1080/01904167.2013.864309 CrossRefGoogle Scholar
  3. Bagci SA, Ekiz H, Yilmaz A, Cakmak I (2007) Effects of zinc deficiency and drought on grain yield of field-grown wheat cultivars in Central Anatolia. J Agron Crop Sci 193:198–206. doi:10.1111/j.1439-037X.2007.00256.x CrossRefGoogle Scholar
  4. Baligar VC, Fageria NK, He ZL (2001) Nutrient use efficiency in plants. Commun Soil Sci Plant Anal 32:921–950. doi:10.1081/CSS-100104098 CrossRefGoogle Scholar
  5. Barik KC, Chandel AS (2006) Effect of copper levels on copper content in soil nutrient uptake and yield of soybean (Glycine max) varieties. Legume Res 29:252–256Google Scholar
  6. Bouain N, Shahzad Z, Rouached A, Abbas-Khan GA, Berthomieu P, Abdelly C, Poirier Y, Rouached H (2014) Phosphate and zinc transport and signalling in plants, toward a better understanding of their homeostasis interaction. J Exp Bot 65:5725–5741. doi:10.1093/jxb/eru314 CrossRefPubMedGoogle Scholar
  7. Dimkpa CO, Bindraban PS (2016) Micronutrients fortification for efficient agronomic production. A review. Agron Sustain Dev 36:1–26. doi:10.1007/s13593-015-0346-6 CrossRefGoogle Scholar
  8. Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2015) Nano-CuO and interaction with nano-ZnO or soil bacterium provide evidence for the interference of nanoparticles in metal nutrition of plants. Ecotoxicol 24:119–129. doi:10.1007/s10646-014-1364-x CrossRefGoogle Scholar
  9. Dimkpa CO, Latta DE, McLean JE, Britt DW, Boyanov MI, Anderson AJ (2013) Fate of CuO and ZnO nano and micro particles in the plant. Environ Sci Technol 47:4734–4742. doi:10.1021/es304736y CrossRefPubMedGoogle Scholar
  10. Dominguez BM, Gomez MVI, Leon FR (2002) Nutritional and analytical implications of phytic acid. Archivos Latino Americanos de Nutri 52:219–231Google Scholar
  11. Eisa GSA, Ali TB (2014) Impact spraying of some microelements on growth, yield, nitrogenase activity and anatomical features of cowpea plants. World J Agric Sci 10:57–67. doi:10.5829/idosi.wjas.2014.10.2.1807 Google Scholar
  12. Enderson JT, Mallarino AR, Haq MU (2015) Soybean yield response to foliar-applied micronutrients and relationships among soil and tissue tests. Agron J 107:2143–2161. doi:10.2134/agronj14.0536 CrossRefGoogle Scholar
  13. Han X, Li X, Uren N, Tang C (2011) Zinc fractions and availability to soybeans in representative soils of Northeast China. J Soils Sed 11:596–606. doi:10.1007/s11368-011-0336-5 CrossRefGoogle Scholar
  14. Heitholt JJ, Sloan JJ, MacKown CT (2002) Copper, manganese, and zinc fertilization effects on growth of soybean on a calcareous soil. J Plant Nutr 25:1727–1740. doi:10.1081/PLN-120006054 CrossRefGoogle Scholar
  15. Hong J, Peralta-Videa JR, Rico C, Shivendra S, Viveros MN, Bartonjo J, Zhao L, Gardea-Torresdey JL (2014) Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants. Environ Sci Technol 48:4376–4385. doi:10.1021/es404931g CrossRefPubMedGoogle Scholar
  16. Inocêncio MF, de Resende ÁV, Neto AEF, Veloso MP, Ferraz FM, Hickmann C (2012) Soybean response to zinc fertilization in soil with contents above critical level. Pesq Agrop Brasileira 47:1550–1554CrossRefGoogle Scholar
  17. Joy EJM, Stein AJ, Young SD, Ander EL, Watts MJ, Broadley MR (2015) Zinc-enriched fertilisers as a potential public health intervention in Africa. Plant Soil 389:1–24. doi:10.1007/s11104-015-2430-8 CrossRefGoogle Scholar
  18. Karim MR, Rahman MA (2015) Drought risk management for increased cereal production in Asian least developed countries. Weath Clim Extr 7:24–35. doi:10.1016/j.wace.2014.10.004 CrossRefGoogle Scholar
  19. Konsaeng S, Dell B, Rerkasem B (2010) Boron mobility in peanut (Arachis hypogaea L.). Plant Soil 330:281–289. doi:10.1007/s11104-009-0199-3 CrossRefGoogle Scholar
  20. Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139. doi:10.1016/j.scitotenv.2015.01.104 CrossRefPubMedGoogle Scholar
  21. Lv J, Zhang S, Luo L, Zhang J, Yang K, Christie P (2014) Accumulation, speciation, and uptake pathway of ZnO nanoparticles in maize. Environ Sci: Nano 2:68–77. doi:10.1039/C4EN00064A Google Scholar
  22. Manzoor A, Khattak RA, Dost M (2014) Humic acid and micronutrient effects on wheat yield and nutrients uptake in salt affected soils. Int J Agric Biol 16:991–995Google Scholar
  23. Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A (2010) Nitrogen uptake, assimilation and remobilization in plants, challenges for sustainable and productive agriculture. Ann Bot 105:1141–1157. doi:10.1093/aob/mcq028 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Miwa K, Fujiwara T (2010) Boron transport in plants: co-ordinated regulation of transporters. Ann Bot 105:1103–1108. doi:10.1093/aob/mcq044 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Monreal CM, DeRosa M, Mallubhotla SC, Bindraban PS, Dimkpa CO (2016) Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients. Biol Fert Soils 52:423–437. doi:10.1007/s00374-015-1073-5 CrossRefGoogle Scholar
  26. Nadeem M, Mollier A, Morel C, Vives A, Prud’homme L, Pellerin S (2011) Relative contribution of seed phosphorus reserves and exogenous phosphorus uptake to maize (Zea mays L.) nutrition during early growth stages. Plant Soil 346:–244. doi:10.1007/s11104-011-0814-y
  27. Osakabe Y, Osakabe K, Shinozaki K, Tran LS (2014) Response of plants to water stress. Front Plant Sci 5:86. doi:10.3389/fpls.2014.00086 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Pardo EM, Vellicce GR, Aguirrezaba L, Pereyra Irujo G, Rocha CML, García MG, Prieto Angueira S, Welin B, Sanchez J, Ledesma F, Castagnaro AP (2015) Drought tolerance screening under controlled conditions predicts ranking of water-limited yield of field-grown soybean genotypes. J Agron Crop Sci 201:95–104. doi:10.1111/jac.12106 CrossRefGoogle Scholar
  29. Raboy V, Dickinson DB (1984) Effect of phosphorus and zinc nutrition on soybean seed phytic acid and zinc. Plant Physiol 75:1094–1098CrossRefPubMedPubMedCentralGoogle Scholar
  30. Reinbott TM, Blevins DG (1995) Response of soybean to foliar-applied boron and magnesium and soil-applied boron. J Plant Nutr 18:179–200. doi:10.1080/01904169509364894 CrossRefGoogle Scholar
  31. Ross JR, Slaton NA, Brye KR, DeLong RE (2006) Boron fertilization influences on soybean yield and leaf and seed boron concentrations. Agron J 98:198–205. doi:10.2134/agronj2005-0131 CrossRefGoogle Scholar
  32. Samarah N, Mullen R, Cianzio S (2004) Size distribution and mineral nutrients of soybean seeds in response to drought stress. J Plant Nutri 27:815–835. doi:10.1081/PLN-120030673 CrossRefGoogle Scholar
  33. Scheiner JD, Gutierrez-Boem FH, Lavado RS (2000) Dynamics of the absorption and division of nutrients in soybean. Phyton-Internat J Exp Bot 69:77–84Google Scholar
  34. Watson J-L, Fang T, Dimkpa CO, Britt DW, McLean JE, Jacobson A, Anderson AJ (2015) The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties. Biometals 28:101–112. doi:10.1007/s10534-014-9806-8 CrossRefPubMedGoogle Scholar
  35. Watts-Williams SJ, Turney TW, Patti AF, Cavagnaro TR (2014) Uptake of zinc and phosphorus by plants is affected by zinc fertiliser material and arbuscular mycorrhizas. Plant Soil 376:165–175. doi:10.1007/s11104-013-1967-7 CrossRefGoogle Scholar
  36. Yruela I (2009) Copper in plants: acquisition, transport and interactions. Funct Plant Biol 26:409–430. doi:10.1071/FP08288 CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2017

Authors and Affiliations

  • Christian O. Dimkpa
    • 1
  • Prem S. Bindraban
    • 1
  • Job Fugice
    • 2
  • Sampson Agyin-Birikorang
    • 2
  • Upendra Singh
    • 2
  • Deborah Hellums
    • 2
  1. 1.Virtual Fertilizer Research Center (VFRC)WashingtonUSA
  2. 2.International Fertilizer Development Center (IFDC)Muscle ShoalsUSA

Personalised recommendations