Skip to main content

Advertisement

Log in

Cereal landraces genetic resources in worldwide GeneBanks. A review

  • Review Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Since the dawn of agriculture, cereal landraces have been the staples for food production worldwide, but their use dramatically declined in the 2nd half of the last century, replaced by modern cultivars. In most parts of the world, landraces are one of the most threatened components of agrobiodiversity, facing the risk of genetic erosion and extinction. Since landraces have a tremendous potential in the development of new cultivars adapted to changing environmental conditions, GeneBanks holding their genetic resources potentially play an important role in supporting sustainable agriculture. This work reviews the current knowledge on cereal landraces maintained in GeneBanks and highlights the strengths and weaknesses of existing information about their taxonomy, origin, structure, threats, sampling methodologies and conservation and GeneBanks’ documentation and management. An overview of major collections of cereal landraces is presented, using the information available in global metadatabase systems. This review on winter cereal landrace conservation focuses on: (1) traditional role of GeneBanks is evolving beyond their original purpose to conserve plant materials for breeding programmes. Today’s GeneBank users are interested in landraces’ history, agro-ecology and traditional knowledge associated with their use, in addition to germplasm traits. (2) GeneBanks therefore need to actively share their germplasm collections’ information using different channels, to promote unlimited and effective use of these materials for the further development of sustainable agriculture. (3) Access to information on the 7.4 million accessions conserved in GeneBanks worldwide, of which cereal accessions account for nearly 45 %, particularly information on cereal landraces (24 % of wheat, 23 % of barley, 14 % of oats and 29 % of rye accessions), is often not easily available to potential users, mainly due to the lack of consistent or compatible documentation systems, their structure and registration. (4) Enhancing the sustainable use of landraces maintained in germplasm collections through the effective application of recent advances in landrace knowledge (origin, structure and traits) and documentation using the internet tools and data providing networks, including the use of molecular and biotechnological tools for the material screening and detection of agronomic traits. (5) Cereal landraces cannot be exclusively conserved as seed samples maintained under ex situ conditions in GeneBanks. The enormous contribution of farmers in maintaining the crop and landraces diversity is recognised. Sharing of benefits and raising awareness of the value of cereal landraces are the most effective ways to promote their conservation and to ensure their continued availability and sustainable use. (6) Evaluation of costs and economic benefits attributed to sustainable use of cereal landraces conserved in the GeneBanks requires comprehensive studies conducted on a case-by-case basis, that take into consideration species/crop resources, conservation conditions and quality and GeneBank location and functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AEGRO:

An Integrated European In Situ Management Work Plan: Implementing Genetic Reserves and On Farm Concepts

ARS:

Agricultural Research Services

AVRDC:

World Vegetable Centre

AWCC:

Australian Winter Cereals Collection

CENARGEN:

EMBRAPA Recursos Genéticos e Biotecnologia

CGN:

Centre for Genetic Resources (The Netherlands)

CIMMYT:

The International Maize and Wheat Improvement Centre

CGIAR:

The Consultative Group on International Agricultural Research

CBD:

Convention on Biological Diversity

CWR:

Crop wild relatives

DSA:

Data Sharing Agreement

EADB:

European Avena Database

EC:

European Commission

ECPGR:

European Cooperative Programme for Plant Genetic Resources

EURISCO:

European Plant Genetic Resources Search Catalogue

ESDB:

European Secale Database

EWDB:

European Wheat Database

FAO:

Food and Agriculture Organization of the United Nations

GBIMS:

Indian GeneBank Information Management System

GFG:

German Federal GeneBank

GRIN:

Germplasm Resources Information Network

GPA:

Global Plan of Action

GBIF:

Global Biodiversity Information Facility

IBCC:

International Barley Core Collection

ICGR-CAAS:

Institute of Crop Germplasm Resources, Chinese Academy of Agricultural Sciences

ICARDA:

International Centre for Agricultural Research in the Dry Areas

IC:

Institute Code

ICIS:

International Crop Information System

IBPGR:

International Board for Plant Genetic Resources

IPGRI:

International Plant Genetic Resources Institute (now Bioversity International)

IPK:

Leibniz Institute of Plant Genetics and Crop Plant Research (Germany)

IHAR:

Plant Breeding and Acclimatization Institute (Poland)

ITPGRFA:

International Treaty on Plant Genetic Resources for Food and Agriculture

MoU:

Memorandum of Understanding

NBPGR:

National Bureau of Plant Genetic Resources (India)

NIs:

European National Inventories

NIAS:

National Institute of Agrobiological Sciences

NordGen:

Nordic Genetic Resources Centre

NSGC:

National Small Grains Germplasm Research Facility (USA)

PGRC:

Plant Gene Resources of Canada

PGR:

Plant genetic resources

PGRFA:

Plant genetic resources for food and agriculture

SEEDNet:

South-East European Development Network on Plant Genetic Resources

SGRP:

Government of The Netherlands and the System-wide Genetic Resources Programme

SINGER:

System-wide Information Network for Genetic Resources

USDA:

US Department of Agriculture

US NPGS:

US National Plant Germplasm System

VIR:

N.I. Vavilov Research Institute of Plant Industry

WIEWS:

World Information and Early Warning System on Plant Genetic Resources for Food and Agriculture.

References

  • Agrawal RC, Behera D, Saxena S (2007) genebank Information Management System (GBIMS). Comput Electron Agric 59:90–96

    Article  Google Scholar 

  • Aguiriano E, Ruiz M, Fité R, Carrillo JM (2006) Analysis of genetic variability in a sample of the durum wheat (Triticum durum Desf.) Spanish collection based on gliadin markers. Genet Resour Crop Evol 53:1543–1552

    Article  CAS  Google Scholar 

  • Allard RW (1970) Population structure and sampling methods. In: Frankel OH, Bennett E (eds) Genetic resources in plants—their exploration and conservation. Blackwell, Oxford, pp 97–107

    Google Scholar 

  • Altieri MA (2003) The sociocultural and food security impacts of genetic pollution via transgenic crops of traditional varieties in Latin American centers of peasant agriculture. Bull Sci Technol Soc 23:350–359

    Article  Google Scholar 

  • Assefa A, Labuschange MT (2004) Phenotypic diversity in barley (Hordeum vulgare L.) landraces from north Shewa in Ethiopia. Biodivers Conserv 13:1441–1451

    Article  Google Scholar 

  • Barbier EB, Brown G, Dalmozzone S et al (1995) The economic value of biodiversity. In: Heywood VH (ed) Global biodiversity assessment. United Nations Environment Program. Cambridge University Press, Cambridge, pp 820–914

    Google Scholar 

  • Baum B (1968) Delimitation of the genus Avena (Gramineae). Can J Bot 46:121–132

    Article  Google Scholar 

  • Bechere E, Belay G, Mitiku D, Merker A (1996) Phenotypic diversity of tetraploid wheat landraces from northern and north-central regions of Ethiopia. Hereditas 124:165–172

    Article  Google Scholar 

  • Bellon MR (1996) The dynamic of crop infraspecific diversity: a conceptual frame work at the farmer level. Econ Bot 50:26–37

    Article  Google Scholar 

  • Bennett E (1970) Tactics in plant exploration. In: Frankel OH, Bennett E (eds) Genetic resources in plants—their exploration and conservation. Blackwell, Oxford, pp 157–179

    Google Scholar 

  • Berg T (2009) Landraces and folk varieties: a conceptual reappraisal of terminology. Euphytica 166:423–430

    Article  Google Scholar 

  • Bettencourt E (2011) Chapter 8: Sources of information on existing germplasm collections. Crop GeneBank Knowledge Base. Available from http://cropgenebank.sgrp.cgiar.org/index.php?option=com_content&view=article&id=658

  • Bettencourt E, Konopka J (1990) Directory of crop germplasm collections. 3. Cereals: Avena, Hordeum, millets, Oryza, Secale, Sorghum, Triticum, Zea and pseudocereals. International Board for Plant Genetic Resources, Rome

  • Bettencourt E, Ford-Lloyd BV, Dias S (2008) Genetic erosion and genetic pollution of crop wild relatives: the PGR Forum perspective and achievements. In: Maxted N, Ford-Lloyd BV, Kell SP, Iriondo J, Dulloo E, Turok J (eds) Crop wild relative conservation and use. CABI, Wallingford, pp 275–284

    Google Scholar 

  • Bommer DFR (1991) The historical development of international collaboration in plant genetic resources. In: van Hintum TJL, Frese L, Perret PM, (eds) Searching for new concepts for collaborative genetic resources management. Papers of the EUCARPIA/IBPGR Symposium, Wageningen, The Netherlands, 3–6 December 1990. International Crop Networks Series no. 4. International Board for Plant Genetic Resources, Rome, pp 3–12

  • Bothmer R, von Jacobsen N (1985) Origin, taxonomy, and related species. In: Rasmusson DC (ed) Barley. American Society of Agronomists, Madison, pp 19–56

    Google Scholar 

  • Brown AHD, Marshall DR (1995) A basic sampling strategy: theory and practice. In: Guarino L, Ramanatha Rao V, Reid R (eds) Collecting plant genetic diversity technical guidelines. CABI, Wallingford, pp 75–91

    Google Scholar 

  • Brummitt RK, Powell CE (1992) Authors of plant names. Royal Bot Garden Kew, Kew

    Google Scholar 

  • Brush SP (1995) In situ conservation of landraces in centres of crop diversity. Crop Sci 35:346–354

    Article  Google Scholar 

  • Buerkert A, Oryakhail M, Filatenko AA, Hammer K (2006) Cultivation and taxonomic classification of wheat landraces Panjsher valley of Afghanistan after 23 years of war. Genet Resour Crop Evol 53:91–97. doi:10.1007/s10722-004-0717-3

    Article  Google Scholar 

  • Camacho Villa TC, Maxted N, Scholten MA, Ford-Lloyd BV (2005) Defining and identifying crop landraces. Plant Genet Resour: Charact Util 3:373–384. doi:10.1079/PGR200591

    Article  Google Scholar 

  • CBD (1993) Convention on Biological Diversity. Available from http://www.cbd.int/convention/convention.shtml. Accessed July 2011

  • Chebotar S, Roder MS, Korzun V, Saal B, Weber WE, Börner A (2003) Molecular studies on genetic integrity of open-pollinating species rye (Secale cereale L.) after long-term genebank maintenance. Theor Appl Genet 107:1469–1476

    Article  PubMed  CAS  Google Scholar 

  • Chwedorzewska KJ, Bednarek PT, Lewandowska R, Krajewski P, Puchalski J (2006) Studies on genetic changes in rye samples (Secale cereale L.) maintained in a seed bank. Cell Mol Biol Lett 11:338–347

    Article  PubMed  CAS  Google Scholar 

  • Damania AB (1996) Biodiversity conservation: a review of options complementary to standard ex situ methods. Plant Genet Resour Newsl 107:1–18

    Google Scholar 

  • Damania AB (2008) History, achievements, and current status of genetic resources conservation. Agron J 100:9–21

    Article  Google Scholar 

  • Day Rubenstein K, Smale M, Widrlechne MP (2006) Demand for genetic resources and the U.S. National Plant Germplasm System. Crop Sci 46:1021–1031

    Article  Google Scholar 

  • de Bustos A, Jouve N (2002) Phylogenetic relationships of the genus Secale based on the characterization of rDNA ITS sequences. Pl Syst Evol 235:147–154

    Article  CAS  Google Scholar 

  • del Greco A, Negri V, Maxted N (2007) Report of a task force on on-farm conservation and management. Second Meeting, 19–20 June 2006, Stegelitz, Germany. Bioversity International, Rome

  • Delipavlov D (1962) Secale rhodopaeum Delipavlov—a new species of rye from the Rhodope Mountains. Dokl Bulg AkadNauk 15:407–411

    Google Scholar 

  • Demissie A, Bjornstad A (1996) Phenotypic diversity of Ethiopian barleys in relation to geographical regions, altitudinal range, and agro-ecological zones: as an aid to germplasm collection and conservation strategy. Hereditas 124:17–29

    Article  Google Scholar 

  • DGADR (2009) Procedimentos de inscrição no Catálogo Nacional de Variedades e de produção, certificação e comercialização de variedades de conservação de espécies agrícolas. Ministério da Agricultura, do Desenvolvimento Rural e das Pescas. Direcção-Geral de Agricultura e Desenvolvimento Rural. DGADR-DSFMMP. DSVRG-27/09

  • Dias S (2009) EURISCO-The European Plant Genetic Resources Search Catalogue. A vehicle to promote of the conservation and sustainable utilization of plant genetic resources. Poster abstract—poster P53. At Biodiversity Information Standards (TDWG), TDWG 2009 Annual Conference, 9-13th November 2009, CORUM Conference Centre Montpellier, France

  • Dias S (2010) EURISCO Status. Presented at the “Meeting of the ECPGR Documentation and Information Network Coordinating Group 17–18 February 2009. Rome, Italy”. Slides. Available from http://www.ecpgr.cgiar.org/networks/documentation_information/maccarese_2010.html

  • Dias SR, Gaiji S, Turok J (2006) “EURISCO- Facts and Figures”. Second European Workshop on National Plant Genetic Resources Programmes: from research to policy making. November 2006. Available from (http://www2.bioversityinternational.org/Regions/Europe/Luxembourg_Workshop/index.asp

  • Dias S, Dulloo ME, Arnaud E (2011) Chapter 33 - The role of EURISCO in promoting use of agricultural biodiversity. In: Maxted N, Lothar F, Iriondo J, Dulloo E, Ford-Lloyd BV, Pinheiro de Carvalho MAA (eds) Agrobiodiversity conservation: securing the diversity of crop wild relatives and landraces. CABI, Wallingford. ISBN 9781845938512)

  • Diederichsen A (2008) Assessments of genetic diversity within a world collection of cultivated hexaploid oat (Avena sativa L.) based on qualitative morphological characters. Genet Resour Crop Evol 55:419–440

    Article  Google Scholar 

  • Diederichsen A (2009) Duplication assessments in Nordic Avena sativa accessions at the Canadian national genebank. Genet Resour Crop Evol 56:587–597

    Article  Google Scholar 

  • Diulgheroff S (2006) A global overview of assessing and monitoring genetic erosion of crop wild relatives and local varieties using WIEWS and other elements of the FAO Global System on PGR. In: Ford-Lloyd BV, Dias SR, Bettencourt E (eds) Genetic erosion and pollution assessment methodologies. Proceedings of PGR Forum Workshop 5, Terceira Island, Autonomous Region of the Azores, Portugal, 8–11 September 2004. Published on behalf of the European Crop Wild Relative Diversity Assessment and Conservation Forum. Bioversity International, Rome

  • Dobrovolskaya O, Saleh U, Malysheva-Otto L (2005) Rationalising germplasm collections: a case study for wheat. Theor Appl Genet 111:1322–1329

    Article  PubMed  CAS  Google Scholar 

  • Dorofeev VF, Filatenko AA, Migushova EF, Udaczin RA, Jakubziner MM (1979) Wheat. In: Dorofeev VF, Korovina ON (eds) Flora of cultivated plants, vol 1. Kolos, Leningrad

    Google Scholar 

  • dos Santos TMM, Slaski JJ, Pinheiro de Carvalho MAA, Taylor GJ, Clemente Vieira MR (2005) Evaluation of the Madeiran wheat germplasm for aluminium resistance using aluminium-induced callose formation in root apices as a marker. Acta Physiol Plant 27:297–302

    Article  Google Scholar 

  • dos Santos TMM, Ganança F, Slaski JJ, Pinheiro de Carvalho MAA (2009) Morphological characterization of wheat genetic resources from the Island of Madeira, Portugal. Genet Resour Crop Evol 56:363–375. doi:10.1007/s10722-008-9371-5

    Article  Google Scholar 

  • EC (2008) Commission Directive 2008/62/EC of 20 June 2008. Official Journal of the European Union. L 162/13. EN. 21.6.2008

  • Ellstrand NC (2001) When transgenes wander, should we worry? Plant Physiol 125:1543–1545

    Article  PubMed  CAS  Google Scholar 

  • Engels JMM, Visser L (eds) (2003) A guide to effective management of germplasm collections. IPGRI Handbooks for genebanks no. 6. IPGRI, Rome, Italy

    Google Scholar 

  • EURISCO (2012) Available from http://eurisco.ecpgr.org. Accessed February 2012

  • European Wheat database (EWDB) (2012) Available from http://www.ecpgr.cgiar.org/database/crops/wheat.htm

  • FAO (1996) Global plan of action for the conservation and sustainable utilization of plant genetic resources for food and agriculture. Food and Agriculture Organization of the United Nations, Rome, p 63

    Google Scholar 

  • FAO (1998) The State of the World’s Plant Genetic Resources for Food and Agriculture. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAO (2010) The Second Report on The State of the World’s Plant Genetic Resources for Food and Agriculture. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAO (2011) Second Global Plan of Action for Plant Genetic Resources for Food and Agriculture. Food and Agriculture Organization of the United Nations, Rome, p 51

    Google Scholar 

  • Farias RM, Bettencourt E (2006) Estratégia para missões sistemáticas de colheita de espécies vegetais para conservação ex situ. Editores: Instituto Nacional de Investigação Agrária e das Pescas (INIAP); Direcção Geral de Agricultura de Entre Douro e Minho (DRAEDM) pp 39

  • Ferreira ME (2006) Molecular analysis of genebanks for sustainable conservation and increased use of crop genetic resources. In: Ruane J, Sonnino A (eds) The role of biotechnology in exploring and protecting the agricultural resources. FAO, Rome, pp 121–127

    Google Scholar 

  • Finkel E (2009) Scientists seek easier access to seed banks science. 12 June 2009: 1376. doi:10.1126/science.324_1376

  • Frankel OH, Hawkes JG (1975) Genetic resources—the past ten years and the next. In: Frankel OH, Hawkes JG (eds) Crop genetic resources for today and tomorrow. Cambridge University Press, Cambridge, pp 1–11

    Google Scholar 

  • Friis-Hansen E, Sthapit B (2000) Participatory approaches to the conservation and use of plant genetic resources. International Plant Genetic Resources Institute (IPGRI), Rome

    Google Scholar 

  • Frisvold G, Sullivan J, Raneses A (2003) Genetic improvements in major U.S. crops: the size and distribution of benefits. Agric Econ 28:109–119

    Article  Google Scholar 

  • Gaiji S, Dias S, Endresen DTF, Franco T (2008) Building a global accession level information system in support to the International Treaty on Plant Genetic Resources for Food and Agriculture—ways forward in the Americas. Recur Natur Ambient 53:126–135

    Google Scholar 

  • Gandilyan PA (1980) Key to wheat, Aegilops, rye and barley. Academy of Science, Armenian SSR, Erevan

    Google Scholar 

  • Guarino L (2003) Approaches to measuring genetic erosion. PGR Documentation and Information in Europe—towards a sustainable and user-oriented information infrastructure. EPGRIS Final Conference combined with a meeting of the ECP/GR Information and Documentation Network. Prague, Czech Republic, 11–13 September

  • Guarino L, Chadja H, Mokkadem A (1991) Wheat collecting in Southern Algeria. Short Commun Rachis Newsl, pp 23–25

  • Guarino L, Ramanatha Rao V, Reid R (1995) Collecting plant genetic diversity—technical guidelines. IPGRI/FAO/IUCN/UNEP, p 748

  • Hammer K, Gladis TH (1996) Funkionen der genebank des IPK Gatersleben bei der in situ Erhaltung on farm. Schr Genet Ressour 2:83–89

    Google Scholar 

  • Hammer K, Spahillar M (1998) Burimet gjenetike te bimeve dhe agrobiodiversiteti. Bul Shkencave Bujqesore 3:29–36

    Google Scholar 

  • Hammer K, Diederichsen A, Spahillar M (1999) Basic studies toward strategies for conservation of plant genetic resources pp 29–33. In: Serwinski J, Faberova I (eds) Proceedings of technical meeting on the methodology of the FAO World Information and Early Warning System on Plant Genetic Resources. FAO, Rome. Available from http://apps3.fao.org/wiews/Prague/Paper1.htm

  • Hanson J (1985) International Board for Plant Genetic Resources. Practical Manuals for genebanks no 1. IBPGR Secretariat, Rome

    Google Scholar 

  • Harlan J (1975) Our vanishing genetic resources. Science 188:618–621

    Article  Google Scholar 

  • Harris DR (1990) Vavilov's concept of centres of origin of cultivated plants: its genesis and its influence on the study of agricultural origins. Biol J Linn Soc 39:7–16

    Article  Google Scholar 

  • Hawkes JG, Maxted N, Ford-Lloyd BV (2000) The ex situ conservation of plant genetic resources. Kluwer, Dordrecht

    Book  Google Scholar 

  • Hirano R, Kikuchi A, Kawase M, Watanabe KN (2008) Evaluation of genetic diversity of bread wheat landraces from Pakistan by AFLP and implications for a future collection strategy. Genet Resour Crop Evol 55:1007–1015

    Article  Google Scholar 

  • Hirano R, Jatoi SA, Kawase M, Kikuchi A, Watanabe KN (2009) Consequences of ex situ conservation on the genetic integrity of germplasm held at different genebanks: a case study of bread wheat collected in Pakistan. Crop Sci 49:2160–2166

    Article  CAS  Google Scholar 

  • Holubec V, Vymyslický T, Paprštein F (2010) Possibilities and reality of on-farm conservation. Czech J Genet Plant Breed 46(Special Issue):S60–S64

    Google Scholar 

  • IBPGR (1980) A glossary of plant genetic resources terms. IBPGR Secretariat, Rome

    Google Scholar 

  • Index Herbariorum (2012) A Global Directory of Public Herbaria and Associated Staff. [continuously updated]. Available from http://sciweb.nybg.org/science2/IndexHerbariorum.asp. Accessed February 2012

  • ITPGRFA (2004) International Treaty on Plant Genetic Resources for Food and Agriculture. Available from http://www.planttreaty.org/texts_en.htm

  • Jaradat AA, Shahid M, Al Maskri AY (2004) Genetic diversity in the Batini barley landrace from Oman: I. Spike and seed quantitative and qualitative traits. Crop Sci 44:304–315

    Article  Google Scholar 

  • Johnson RC (2008) Gene banks pay big dividends to agriculture, the environment and human welfare. PLoS Biol 6:e148

    Article  PubMed  CAS  Google Scholar 

  • Jones H, Lister DL, Bower MA, Leigh FJ, Smith LM, Jones MK (2008) Approaches and constraints of using existing landrace and extant plant material to understand agricultural spread in prehistory. Plant Genet Resour 6:98–112. doi:10.1017/S1479262108993138

    Article  Google Scholar 

  • Kaplan JK (1998) Conserving the World’s plants. Agric Res 46:4–9

    Google Scholar 

  • Kebebew F, Tsehaye Y, McNeilly T (2001) Diversity of durum wheat (Triticum durum Desf.) at in situ conservation sites in North Shewa and Bale, Ethiopia. J Agric Sci 136:383–392

    Article  Google Scholar 

  • Kimber G, Feldman M (1987) Wild Wheat, an introduction. Special Report 353, College of Agriculture, University of Missouri, Columbia

  • Kimber G, Sears ER (1987) Evolution in the genus Triticum and the origin of cultivated wheat. In: Heyne EG (ed) Wheat and wheat improvement, 2nd edn. American Society of Agronomy, Madison, pp 154–164

    Google Scholar 

  • Knüpffer H (2009) Triticeae genetic resources in ex situ genebank collections. In: Feuillet C, Muehlbauer GJ (eds) Genetics and genomics of the Triticeae, plant genetics and genomics: crops and models 7. Springer, New York. doi:10.1007/978-0-387-77489-3_2

  • Koo B, Pardey PG, Wright BD (2003) The economic costs of conserving genetic resources at the CGIAR centres. Agric Econ 29:287–297

    Google Scholar 

  • Ladizinsky G (1998) Plant evolution under domestication. Kluwer, Dordrecht

    Book  Google Scholar 

  • Leino MV, Hagenblad J (2010) Nineteenth century seeds reveal the population genetics of landrace barley (Hordeum vulgare). Mol Biol Evol 27:964–973

    Article  PubMed  CAS  Google Scholar 

  • Li HB, Zhou MX, Liu CJ (2009) A major QTL conferring crown rot resistance in barley and its association with plant height. Theor Appl Genet 118:903–910. doi:10.1007/s10681-009-9905-8

    Article  PubMed  CAS  Google Scholar 

  • Liston A, Rieseberg LH, Adams RP, Do N, Zhu GL (1990) A Method for collecting dried plant specimens for DNA and isozyme analyses and the results of a field test in Xinjiang China. Ann Mo Bot Gard 77:859–863

    Article  Google Scholar 

  • Lorenzetti F, Negri V (2009) The European seed legislation on conservation varieties. In: Veteläinen M, Negri V, Maxted N (eds) European landraces: on-farm conservation, management and use. Bioversity Technical Bulletin no 15. Bioversity International, Rome, pp. 287–295

  • Lorenzetti F, Lorenzetti S, Negri V (2009) The Italian laws on conservation varieties and the national implementation of Commission Directive 2008/62 EC. In: Veteläinen M, Negri V, Maxted N (eds) European landraces: on-farm conservation, management and use. Bioversity Technical Bulletin no 15. Bioversity International, Rome, pp. 300–304

  • Loskutov IG (1999) Vavilov and His Institute—a history of world collection of plant genetic resources in Russia. International Plant Genetics Research Institute, Rome, p 188

    Google Scholar 

  • Loskutov IG (2003) Classification and diversity of the genus Avena L. In: Lipman E, Maggioni L, Knüpffer H, Ellis R, Leggett JM, Kleijer G, Faberová I, Le Blanc A Cereal Genetic Resources in Europe. Report of a Cereals Network/Report of a Working Group on Wheat, First Meeting, Yerevan, Armenia, 3–5 July 2003/Second Meeting, 22–24 September 2005, La Rochelle, France, IPGRI, Rome, pp 85–90

  • Louette D (1999) Traditional management of seed and genetic diversity: what is a landrace? In: Brush SB (ed) Genes in the field: on-farm conservation of crop diversity. Lewis Publishers, CRDI/IPGRI, pp 109–142

    Google Scholar 

  • Löve Á (1984) Conspectus of the Triticeae. Feddes Repert 95:425–521

    Google Scholar 

  • Mac Key J (1988) A plant breeder’s perspective on taxonomy of cultivated plants. Biol Zentralblatt 107:369–379

    Google Scholar 

  • MADRP (2009) Portaria no. 1268/2009 de 16 de Outubro. Ministério da Agricultura, do Desenvolvimento Rural e das Pescas. Diário da República, 1.ª série—no. 201–16 de Outubro de 2009. pp. 7808–7813

  • Mantzavinou A, Bebeli PJ, Kaltsikes PJ (2005) Estimating genetic diversity in Greek durum wheat landraces with RAPD markers. Aust J Agric Res 56:1355–1364

    Article  Google Scholar 

  • Martos V, Royo C, Rharrabti Y, Garcia del Moral LF (2005) Using AFLPs to determine phylogenetic relationships and genetic erosion in durum wheat cultivars released in Italy and Spain throughout the 20th century. Field Crops Res 91:107–116. doi:10.1016/j.fcr.2004.06.003

    Article  Google Scholar 

  • Maxted N, Ford-Lloyd BV, Hawkes JG (1997) Contemporary conservation strategies. In: Maxted N, Ford-Lloyd BV, Hawkes JG (eds) Plant genetic conservation: the in-situ approach. Chapman & Hall, London, pp 20–55

    Chapter  Google Scholar 

  • Maxted N, Lothar F, Iriondo J, Dulloo E, Ford-Lloyd BV, Pinheiro de Carvalho MAA (2012). Agrobiodiversity conservation: securing the diversity of crop wild relatives and landraces. CABI, Wallingford,365 pp. ISBN: 978-1-84593-851-2

  • Miller AG, Nyberg JA (1995) Collecting herbarium vouchers. I-27. In: Guarino L, Ramanatha Rao V, Reid R (eds) Collecting plant genetic diversity—technical guidelines. IPGRI/FAO/IUCN/UNEP, pp 561–573

  • Moragues M, Zarco-Hernandez J, Moralejo MA, Royo C (2006) Genetic diversity of glutenin protein subunits composition in durum wheat landraces [Triticum turgidum ssp. turgidum convar. durum (Desf.) MacKey] from the Mediterranean basin. Genet Resour Crop Evol 53:993–1002

    Article  CAS  Google Scholar 

  • Moss H, Guarino L (1995) Gathering and recording data in the field. I-19. In: Guarino L, Ramanatha Rao V, Reid R (eds) Collecting plant genetic diversity—technical guidelines. IPGRI/FAO/IUCN/UNEP, pp 367–417

  • Nagel M, Vogel H, Landjeva S et al (2009) Seed conservation in ex situ genebanks-genetic studies on longevity in barley. Euphytica 170:5–14

    Article  CAS  Google Scholar 

  • NCBI (2012) Available from http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=4513. Accessed February 2012

  • Negri V (2003) Landraces in central Italy: where and why they are conserved and perspectives for their on-farm conservation. Genet Resour Crop Evol 50:871–885

    Article  Google Scholar 

  • Nevski A (1941) Beiträge zur Kenntniss der wildwachsenden Gersten in Zusammenhang mit der Frage über den Ursprung von Hordeum vulgare L. und Hordeum distichon L. (Versucheiner Monographie der Gattung Hordeum). Trudy Eot Imr Akad Nauk SSSR 1:64–255

    Google Scholar 

  • Newton AC, Akar T, Baresel JP, Bebeli PJ, Bettencourt E, Bladenopoulos KV, Czembor JH, Fasoula DA, Katsiotis A, Koutis K, Koutsika-Sotiriou M, Kovacs G, Larsson H, Pinheiro de Carvalho MAA, Rubiales D, Russell J, dos Santos TMM, Vaz Patto MC (2010) Cereal landraces for sustainable agriculture. A review. Agron Sust Dev 30:237–269. doi:10.1051/agro/2009032

    Article  Google Scholar 

  • NordGen (2012) Available from www.nordgen.org. Accessed February 2012

  • Painting KA, Perry MC, Denning RA, Ayad WG (1993) Guidebook for genetic resources documentation. A self-teaching approach to the understanding, analysis and development of genetic resources documentation. International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Papadakis JS (1929) Formes Grecques de blé. Bulletin Scientifique No. 1. Station d’Amélioration des Plantes, A Salonique

  • Pardey PG, Koo K, Wright BD, van Dusen ME, Skovmand B, Taba S (2001) Plant genetic resources. Costing the conservation of genetic resources: CIMMYT’s ex situ maize and wheat collection. Crop Sci 41:1286–1299

    Article  Google Scholar 

  • Parzies HK, Spoor W, Ennos RA (2000) Genetic diversity of barley landrace accessions (Hordeum vulgare ssp. vulgare) conserved for different lengths of time in ex situ gene banks. Heredity 84:476–486

    Article  PubMed  CAS  Google Scholar 

  • Pecetti L, Doust MA, Calcagno L, Raciti CN, Boggini G (2001) Variation of morphological and agronomical traits, and protein composition in durum wheat germplasm from Eastern Europe. Genet Resour Crop Evol 48:609–620

    Article  Google Scholar 

  • Perry MC, Bettencourt E (1995) Sources of information on existing germplasm collections. I-8. In: Guarino L, Ramanatha Rao V, Reid R (eds) Collecting plant genetic diversity—technical guidelines. IPGRI/FAO/IUCN/UNEP, pp 121–129

  • Pinheiro de Carvalho MAA, Slaski JJ, dos Santos TMM, Ganança FT, Abreu I, Taylor GJ, Clemente Vieira MR, Popova TN, Franco E (2003) Identification of aluminium resistant genotypes among Madeiran regional wheats. Commun Soil Sci Plant Anal 34(19 & 20):2973–2985. doi:10.1081/CSS-120025219

    Google Scholar 

  • Pistorius R (1997) Scientists, plants and politics. A history of the plant genetic resources movement. IPGRI, Rome

    Google Scholar 

  • Pita JM, Pfrez-Garcia F, Escudero A, de la Cuadra C (1998) Viability of Avena sativa L. seeds after 10 years of storage in base collection. Field Crops Res 55:183–187

    Article  Google Scholar 

  • Porceddu E, Damania AB (1992) Sampling strategies for conserving variability of genetic resources in seed crops. Technical Manual no 17. ICARDA, Aleppo

    Google Scholar 

  • Porfiri O, Costanza MT, Negri V (2009) Landrace Inventories in Italy and the Lazio Region Case Study. In: Veteläinen M, Negri V, Maxted N (eds) European landraces: on-farm conservation, management and use. Biodiversity technical bulletin no 15. Biodiversity International, Rome, pp 117–123

  • Qualset CO (1975) Sampling germplasm in the centre of diversity: an example of disease resistance in Ethiopian barley. In: Frankel OH, Hawkes JG (eds) Crop genetic resources for today and tomorrow. Cambridge University Press, Cambridge, pp 81–96

    Google Scholar 

  • Rao NK, Hanson J, Dulloo ME, Ghosh K, Nowell D, Larinde M (2006) Manual of seed handling in genebanks. Handbook for genebanks no 8. Bioversity International, Rome, Italy

  • Rawashdeh NK, Haddad NI, Al-Ajlouni MM, Turk MA (2007) Phenotypic diversity of durum wheat (Triticum durum Desf.) from Jordan. Genet Resour Crop Evol 54:129–138

    Article  Google Scholar 

  • Reem H, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13

    Article  Google Scholar 

  • Reynolds M, Dreccer F, Trethowan R (2007) Drought-adaptive traits derived from wheat wild relatives and landraces. Integrated approaches to sustain and improve plant production under drought stress. J Exp Bot 58(2):177–186

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro-Carvalho C, Guedes-Pinto H, Heslop-Harrison JS, Schwarzacher T (2001) Introgression of rye chromatin on chromosome 2D in the Portuguese wheat landrace ‘Barbela’. Genome 44:1122–1128

    Article  PubMed  CAS  Google Scholar 

  • Rice EB, Smith ME, Mitchell SE, Kresovich S (2006) Conservation and change: a comparison of in situ and ex situ conservation of Jala maize germplasm. Crop Sci 46:428–436

    Article  CAS  Google Scholar 

  • Rocha F, Bettencourt E, Gaspar C (2008) Genetic erosion assessment through the re-collecting of crop germplasm. Counties of Arcos de Valdevez, Melgaço, Montalegre, Ponte da Barca and Terras de Bouro (Portugal). Plant Genet Resour Newsl 154:6–13

    Google Scholar 

  • Roshevitz RY (1947) A monograph of the wildweedy and cultivated species of rye. Acta Inst Bot Nomine Acad Sci USSR Ser 1 Fe Et Syst 6:105–163

    Google Scholar 

  • Ruiz M, Aguiriano E (2004) Analysis of duplication in the Spanish durum wheat collection maintained in the CRF-INIA on the basis of agro-morphological traits and gliadin proteins. Genet Resour Crop Evol 51:231–235

    Article  CAS  Google Scholar 

  • Ruiz M, Martín I (1998) Spanish landraces collection of durum wheat maintained at the CRF-INIA. CIHEAM-Options Mediterraneennes 40:601–606

    Google Scholar 

  • Ruiz M, Martín I, de la Cuadra C (1999) Cereal seeds viability after 10 years of storage in active and base germplasm collections. Field Crops Res 64:229–236

    Article  Google Scholar 

  • Ruiz M, Rodriguez-Quizano M, Metakovsky EV, Vazquez JF, Carrillo JM (2002) Polymorphism, variation and genetic identity of Spanish common wheat germplasm based on gliadins alleles. Field Crops Res 79:185–196

    Article  Google Scholar 

  • Sackville Hamilton NR, Chorlton KH (1997) Regeneration of accessions in seed collections: a decision guide. Handbook for genebanks no 5. International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Saker M, Adawy S, Smith CM (2008) Entomological and genetic variation of cultivated barley (Hordeum vulgare) from Egypt. Arch Phytopathol Plant Prot 41:526–536

    Article  CAS  Google Scholar 

  • Saxena S, Singh AK (2006) Revisit to definitions and need for inventorization or registration of landrace, folk, farmers’ and traditional varieties. Curr Sci 91:1451–1454

    Google Scholar 

  • Sencer HA, Haekes JG (1980) On the origin of cultivated rye. Biol J Linn Soc 13:299–313

    Article  Google Scholar 

  • SINGER (2012) Available from http://www.singer.cgiar.org/. Accessed February 2012

  • Smale M, Day-Rubenstein K (2002) The demand for crop genetic resources: international use of the US national plant germplasm system. World Dev 30:1639–1655

    Article  Google Scholar 

  • Smale M, Koo B (2003) What is a genebank worth? International Food Policy Research Institute, Biotechnology and Genetic Resource Policies. Brief 7. pp 5

  • Steiner AM, Ruckenbauer P, Goecke E (1997) Maintenance in GeneBanks, a case study: contaminations observed in the Nurnberg oats of 1831. Genet Resour Crop Evol 44:533–538

    Article  Google Scholar 

  • Swaminathan MS (2002) The past, present and future contributions of farmers to the conservation and development of genetic diversity. In: Engels JMM, Ramanatha Rao V, Brown AHD, Jackson MT (eds) IPGRI. Managing Plant Genetic Diversity. CABI, Wallingford, pp 23–31

    Google Scholar 

  • Teklu Y, Hammer K (2009) Diversity of Ethiopian tetraploid wheat germplasm: breeding opportunities for improving grain yield potential and quality traits. Plant Genet Resour 7:1–8

    Article  Google Scholar 

  • Teklu Y, Hammer K, Huang XQ, Roder MS (2005) Analysis of microsatellite diversity in Ethiopian tetraploid wheat landraces. Genet Resour Crop Evol 53:1115–1126

    Article  CAS  Google Scholar 

  • Tesemma T, Tsegaye S, Belay G, Bechere E, Mitiku D (1998) Stability of performance of tetraploid wheat landraces in the Ethiopian highland. Euphytica 102:301–308

    Article  Google Scholar 

  • Torricelli R, Quintalian L, Falcinelli M (2009) The “Farro” (Triticum dicoccon Schrank) from Monteleone di Spoleto (Valnerina Valley, Umbria). In: Veteläinen M, Negri V, Maxted N (eds.) European landraces: on-farm conservation, management and use. Bioversity Technical Bulletin no 15. Bioversity International, Rome, pp 183–186

  • Trethowan RM, Mujeeb-Kazi A (2008) Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop Sci 48:1255–1265

    Article  Google Scholar 

  • Tsegaye S, Tesemma T, Belay G (1996) Relationships among tetraploid wheat (Triticum turgidum L.) landrace populations revealed by isozyme markers and agronomic traits. Theor Appl Genet 93:600–605

    Article  CAS  Google Scholar 

  • van Hintum TJL, Ellings A (1991) Assessment of glutenin and phenotypic diversity of Syrian durum wheat landraces in relation to their geographical regions. Euphytica 55:209–215

    Article  Google Scholar 

  • van Hintum TJL, Knüpffer H (1995) Duplication within and between germplasm collections. I. Identification duplication on the basis of passport data. Genet Resour Crop Evol 42:1127–1133

    Google Scholar 

  • van Hintum TJL, Sackville Hamilton NR, Engles JMM, van Treuren R (2002) Accession management strategies: splitting and lumping. In: Engels JMM, Ramanatha Rao V, Brown AHD, Jackson MT (eds) Managing plant genetic diversity. CABI, New York, pp 113–120

    Google Scholar 

  • van Slageren MW (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Wageningen Agriculture University Papers, 7. Wageningen Agricultural University, Wageningen, 513 pp

  • van Treuren R, van Hintum TJL (2001) Identification of intra-accession genetic diversity in selfing crops using AFLP markers: Implications for collection management. Genet Resour Crop Evol 48:287–295

    Article  Google Scholar 

  • van Treuren R, Bas N, Goossens PJ, Jansen H, van Soest LJM (2005) Genetic diversity in perennial ryegrass and white clover among old Dutch grasslands as compared to cultivars and nature reserves. Mol Ecol 14:39–52

    Article  PubMed  Google Scholar 

  • Vasconcelos JC (1933) Trigos Portugueses ou de há muito cultivados no País (subsídios para o seu estudo botânico). Boletim de Agricultura Ano I, (1–2 1 série), Direcção Geral de Acção Social Agrária, Lisboa

  • Veteläinen M, Negri V, Maxted N (2009) European landraces: on-farm conservation, management and use. Bioversity Technical Bulletin no 15. Bioversity International, Rome

  • von Rümker K (1908) Die systematische Einteilung und Benen-ung der Getreidesorten für praktische Zwecke. Jahrb Dtsch landwirts Ges 23:137–167

    Google Scholar 

  • WIEWS (2012) Available from http://apps3.fao.org/wiews/wiews.jsp. Accessed March 2012

  • Wood D, Lenne J (1997) The conservation of agrobiodiversity on-farm: questioning the emerging paradigm. Biodivers Conserv 6:109–129

    Article  Google Scholar 

  • Yonezawa K (1985) A definition of the optimal allocation of effort in conservation of plant genetic resources with application to sample size determination for field collection. Euphytica 34:345–354

    Article  Google Scholar 

  • Zeven AC (1998) Landraces: a review of definitions and classifications. Euphytica 104:127–139

    Article  Google Scholar 

  • Zeven AC (2002) Traditional maintenance breeding of landraces: 2 Practical and theoretical considerations on maintenance of variation of landraces by farmers and gardeners. Euphytica 123:147–158

    Article  Google Scholar 

  • Zeven AC, Schachl R (1989) Groups of bread wheat landraces in Austrian Alps. Euphytica 41:235–246

    Article  Google Scholar 

  • Zohary D, Hopf M (2000) Domestication of plants in the old world: the origin and spread of cultivated plants in West Asia, Europe, and the Nile Valley. Oxford University Press, New York

    Google Scholar 

Download references

Acknowledgements

This work was support by the European Community, through the INTERREG IIIB and MAC programmes, research projects Germobanco Agrícola da Macaronesia and AGRICOMAC. This paper was edited by Olga Spellman (Bioversity International)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan J. Slaski.

Additional information

Eliseu Bettencourt is currently on leave of absence.

About this article

Cite this article

de Carvalho, M.A.A.P., Bebeli, P.J., Bettencourt, E. et al. Cereal landraces genetic resources in worldwide GeneBanks. A review. Agron. Sustain. Dev. 33, 177–203 (2013). https://doi.org/10.1007/s13593-012-0090-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-012-0090-0

Keywords

Navigation