A new design of bee cage for laboratory experiments: nutritional assessment of supplemental diets in honey bees (Apis mellifera)

Abstract

We designed a cage that can maintain adult bees for 21 days with about 90% survival rate, in addition to facilitating the changing of sucrose syrup and beebread, and collection of live and dead bees without disturbing or releasing bees. The consumption rates of bee pollen diet and sucrose syrup for groups of 50–200 honey bees were recorded for 21 days after emergence. The bees consumed the bee pollen diet mainly at the age of 1–9 days. Regular consumption of sucrose syrup was observed among all bee groups throughout the 21 days. Furthermore, the nutritional responses of nurse bees—specifically, the expressions of major royal jelly protein 1 (mrjp1) in the head and vitellogenin (vg) in the abdomen—upon the provision of five single-supplemental diets were evaluated. We aimed to improve the usability of bee cages by elucidating the food consumption of bees and the relationship between nutritional gene expression and the ingestion of each single-protein diet.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Data availability

The data that support the findings of this study are available from the corresponding author on request.

References

  1. Altaye SZ, Pirk CW, Crewe RM, Nicolson SW (2010) Convergence of carbohydrate-biased intake targets in caged worker honeybees fed different protein sources. J Exp Biol 213:3311-3318. doi:https://doi.org/10.1242/jeb.046953

    CAS  Article  PubMed  Google Scholar 

  2. Amro A, Omar M, Ai-Ghamdi A (2016) Influence of different proteinaceous diets on consumption, brood rearing, and honey bee quality parameters under isolation conditions. Turk J Vet Anim Sci 40:468-475. doi:https://doi.org/10.3906/vet-1507-28

    CAS  Article  Google Scholar 

  3. Arien Y, Dag A, Yona S, Tietel Z, Lapidot Cohen T, Shafir S (2020) Effect of diet lipids and omega-6:3 ratio on honey bee brood development, adult survival and body composition. J Insect Physiol 124:104074-104081. doi:https://doi.org/10.1016/j.jinsphys.2020.104074

    CAS  Article  PubMed  Google Scholar 

  4. Aumer D, Mumoki FN, Pirk CWW, Moritz RFA (2018) The transcriptomic changes associated with the development of social parasitism in the honeybee Apis mellifera capensis. Sci Nat-Heidelberg 105:22-33. doi:https://doi.org/10.1007/s00114-018-1552-2

    CAS  Article  Google Scholar 

  5. Barker RJ, Lehner Y (1978) Laboratory comparison of high fructose corn syrup, grape syrup, honey, and sucrose syrup as maintenance food for caged honey bees. Apidologie 9:111-116. doi:https://doi.org/10.1051/apido:19780203

    Article  Google Scholar 

  6. Beaurepaire A, Piot N, Doublet V, Antunez K, Campbell E, Chantawannakul P, Chejanovsky N, Gajda A, Heerman M, Panziera D, Smagghe G, Yanez O, de Miranda JR, Dalmon A (2020) Diversity and global distribution of viruses of the western honey bee, Apis mellifera. Insects 11:239-263. doi:https://doi.org/10.3390/insects11040239

    Article  PubMed Central  Google Scholar 

  7. Bosua HJ, Nicolson SW, Archer CR, Pirk CWW (2018) Effects of cage volume and bee density on survival and nutrient intake of honeybees (Apis mellifera L.) under laboratory conditions. Apidologie 49:734-746. doi:https://doi.org/10.1007/s13592-018-0595-x

    CAS  Article  Google Scholar 

  8. Branchiccela B, Castelli L, Corona M, Diaz-Cetti S, Invernizzi C, Martinez de la Escalera G, Mendoza Y, Santos E, Silva C, Zunino P, Antunez K (2019) Impact of nutritional stress on the honeybee colony health. Scientific reports 9:10156-10166. doi:https://doi.org/10.1038/s41598-019-46453-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Brodschneider R, Crailsheim K (2010) Nutrition and health in honey bees. Apidologie 41:278-294. doi:https://doi.org/10.1051/apido/2010012

    Article  Google Scholar 

  10. Brodschneider R, Libor A, Kupelwieser V, Crailsheim K (2017) Food consumption and food exchange of caged honey bees using a radioactive labelled sugar solution. PLoS One 12:e0174684-e0174702. doi:https://doi.org/10.1371/journal.pone.0174684

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Buttstedt A, Moritz RF, Erler S (2013) More than royal food- Major royal jelly protein genes in sexuals and workers of the honeybee Apis mellifera. Front Zool 10:1-10. doi:https://doi.org/10.1186/1742-9994-10-72

    CAS  Article  Google Scholar 

  12. Buttstedt A, Moritz RF, Erler S (2014) Origin and function of the major royal jelly proteins of the honeybee (Apis mellifera) as members of the yellow gene family. Biol Rev Camb Philos Soc 89:255-269. doi:https://doi.org/10.1111/brv.12052

    Article  PubMed  Google Scholar 

  13. Crailsheim K, Schneider LHW, Hrassnigg N, Bühlmann G, Brosch U, Gmeinbauer R, Schöffmann B (1992) Pollen consumption and utilization in worker honeybees (Apis mellifera carnica): dependence on individual age and function. J Insect Physiol 38:409-419. doi:https://doi.org/10.1016/0022-1910(92)90117-V

    Article  Google Scholar 

  14. Cremonz TM, De Jong D, Bitondi MMG (1998) Quantification of hemolymph proteins as a fast method for testing protein diets for honey bees (Hymenoptera: Apidae). J Econ Entomol 91:1284-1289. doi:https://doi.org/10.1093/jee/91.6.1284

    Article  Google Scholar 

  15. De Jong D, da Silva EJ, Kevan PG, Atkinson JL (2009) Pollen substitutes increase honey bee haemolymph protein levels as much as or more than does pollen. J Apic Res 48:34-37. doi:https://doi.org/10.3896/ibra.1.48.1.08

    Article  Google Scholar 

  16. Dechaume Moncharmont FX, Decourtye A, Hennequet-Hantier C, Pons O, Pham-Delegue MH (2003) Statistical analysis of honeybee survival after chronic exposure to insecticides. Environ Toxicol Chem 22:3088-3094. doi:https://doi.org/10.1897/02-578

    Article  PubMed  Google Scholar 

  17. Di Pasquale G, Salignon M, Le Conte Y, Belzunces LP, Decourtye A, Kretzschmar A, Suchail S, Brunet JL, Alaux C (2013) Influence of pollen nutrition on honey bee health: do pollen quality and diversity matter? PLoS One 8:e72016-e72028. doi:https://doi.org/10.1371/journal.pone.0072016

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Elzen PJ, Baxter JR, Neumann P, Solbrig A, Pirk C, Hepburn HR, Westervelt D, Randall C (2001) Behaviour of African and European subspecies of Apis mellifera toward the small hive beetle, Aethina tumida. J Apic Res 40:40-41. doi:https://doi.org/10.1080/00218839.2001.11101049

    Article  Google Scholar 

  19. Evans J, Chen YP, di Prisco GdP, Pettis J, Williams V (2009) Bee cups: single-use cages for honey bee experiments. J Apic Res 48:300-302. doi:https://doi.org/10.3896/ibra.1.48.4.13

    Article  Google Scholar 

  20. Goulson D, Nicholls E, Botias C, Rotheray EL (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347:1255957-1255967. doi:https://doi.org/10.1126/science.1255957

    CAS  Article  PubMed  Google Scholar 

  21. Gregorc A, Alburaki M, Rinderer N, Sampson B, Knight PR, Karim S, Adamczyk J (2018) Effects of coumaphos and imidacloprid on honey bee (Hymenoptera: Apidae) lifespan and antioxidant gene regulations in laboratory experiments. Scientific reports 8:15003-15015. doi:https://doi.org/10.1038/s41598-018-33348-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Grozinger CM, Sharabash NM, Whitfield CW, Robinson GE (2003)Pheromone-mediated gene expression in the honey bee brain. Proc Natl Acad Sci USA 100:14519-14525. doi:https://doi.org/10.1073/pnas.2335884100

    CAS  Article  PubMed  Google Scholar 

  23. Hendriksma HP, Pachow CD, Nieh JC (2019) Effects of essential amino acid supplementation to promote honey bee gland and muscle development in cages and colonies. J Insect Physiol 117:103906-103913. doi:https://doi.org/10.1016/j.jinsphys.2019.103906

    CAS  Article  PubMed  Google Scholar 

  24. Huang SK, Csaki T, Doublet V, Dussaubat C, Evans JD, Gajda AM, Gregorc A, Hamilton MC, Kamler M, Lecocq A, Muz MN, Neumann P, Özkirim A, Schiesser A, Sohr AR, Tanner G, Tozkar CÖ, Williams GR, Wu L, Zheng H, Chen YP (2014) Evaluation of cage designs and feeding regimes for honey bee (Hymenoptera: Apidae) laboratory experiments. J Econ Entomol 107:54-62. doi:https://doi.org/10.1603/ec13213

    Article  PubMed  Google Scholar 

  25. Köhler A, Nicolson SW, Pirk CWW (2013) A new design for honey bee hoarding cages for laboratory experiments. J Apic Res 52:12-14. doi:https://doi.org/10.3896/IBRA.1.52.2.03

    Article  Google Scholar 

  26. Liolios V, Tananaki C, Dimou M, Kanelis D, Goras G, Karazafiris E, Thrasyvoulou A (2016) Ranking pollen from bee plants according to their protein contribution to honey bees. J Apic Res 54:582-592. doi:https://doi.org/10.1080/00218839.2016.1173353

    Article  Google Scholar 

  27. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402-408. doi:https://doi.org/10.1006/meth.2001.1262

    CAS  Article  Google Scholar 

  28. Lourenço A, Pedro, Mackert A, dos Santos Cristino A, Simões Z, Luz Paulino (2008) Validation of reference genes for gene expression studies in the honey bee, Apis mellifera, by quantitative real-time RT-PCR. Apidologie 39:372-385. doi:https://doi.org/10.1051/apido:2008015

    CAS  Article  Google Scholar 

  29. Manning R (2006) Fatty acid composition of pollen and the effect of two dominant fatty acids (linoleic and oleic) in pollen and flour diets on longevity and nutritional composition of honey bees (Apis mellifera). Murdoch University

  30. Martin-Hernandez R, Meana A, Garcia-Palencia P, Marin P, Botias C, Garrido-Bailon E, Barrios L, Higes M (2009) Effect of temperature on the biotic potential of honeybee microsporidia. Appl Environ Microbiol 75:2554-2557. doi:https://doi.org/10.1128/AEM.02908-08

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Omar E, Abd-Ella AA, Khodairy MM, Moosbeckhofer R, Crailsheim K, Brodschneider R (2017) Influence of different pollen diets on the development of hypopharyngeal glands and size of acid gland sacs in caged honey bees (Apis mellifera). Apidologie 48:425-436. doi:https://doi.org/10.1007/s13592-016-0487-x

    CAS  Article  Google Scholar 

  32. Peng Y, D'Antuono M, Manning R (2012) Effects of pollen and artificial diets on the hypopharyngeal glands of newly hatched bees (Apis mellifera L.). J Apic Res 51:53-62. doi:https://doi.org/10.3896/ibra.1.51.1.07

    Article  Google Scholar 

  33. Rahman S, Thangkhiew I, Hajong SR (2014) Hypopharyngeal gland activity in task-specific workers under brood and broodless conditions in Apis cerana indica (fab.). J Apic Sci 58:59-70. doi:https://doi.org/10.2478/jas-2014-0022

    CAS  Article  Google Scholar 

  34. Ricigliano VA, Mott BM, Maes PW, Floyd AS, Fitz W, Copeland DC, Meikle WG, Anderson KE (2019) Honey bee colony performance and health are enhanced by apiary proximity to US Conservation Reserve Program (CRP) lands. Scientific reports 9:4894-4905. doi:https://doi.org/10.1038/s41598-019-41281-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Scharlaken B, de Graaf DC, Goossens K, Brunain M, Peelman LJ, Jacobs FJ (2008) Reference gene selection for insect expression studies using quantitative real-time PCR: The head of the honeybee, Apis mellifera, after a bacterial challenge. J Insect Sci 8:1-10. doi:https://doi.org/10.1673/031.008.3301

    Article  Google Scholar 

  36. Steinhauer N, Kulhanek K, Antunez K, Human H, Chantawannakul P, Chauzat MP, vanEngelsdorp D (2018) Drivers of colony losses. Curr Opin Insect Sci 26:142-148. doi:https://doi.org/10.1016/j.cois.2018.02.004

    Article  PubMed  Google Scholar 

  37. Tosi S, Nieh JC (2017) A common neonicotinoid pesticide, thiamethoxam, alters honey bee activity, motor functions, and movement to light. Scientific reports 7:15132-15144. doi:https://doi.org/10.1038/s41598-017-15308-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. van der Steen J (2007) Effect of a home-made pollen substitute on honey bee colony development. J Apic Res 46:114-119. doi:https://doi.org/10.3896/ibra.1.46.2.09

    Article  Google Scholar 

  39. Williams GR, Alaux C, Costa C, Csáki T, Doublet V, Eisenhardt D, Fries I, Kuhn R, McMahon DP, Medrzycki P, Murray TE, Natsopoulou ME, Neumann P, Oliver R, Paxton RJ, Pernal SF, Shutler D, Tanner G, van der Steen JJM, Brodschneider R (2013) Standard methods for maintaining adult Apis mellifera in cages under in vitro laboratory conditions. J Apic Res 52:1-36. doi:https://doi.org/10.3896/ibra.1.52.1.04

    Article  Google Scholar 

  40. Wright GA, Nicolson SW, Shafir S (2018) Nutritional physiology and ecology of honey bees. Annu Rev Entomol 63:327-344. doi:https://doi.org/10.1146/annurev-ento-020117-043423

    CAS  Article  PubMed  Google Scholar 

  41. Wu JY, Anelli CM, Sheppard WS (2011)Sub-lethal effects of pesticide residues in brood comb on worker honey bee (Apis mellifera) development and longevity. PLoS One 6:e14720-e14730. doi:https://doi.org/10.1371/journal.pone.0014720

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Wu MC, Chang YW, Lu KH, Yang EC (2017) Gene expression changes in honey bees induced by sublethal imidacloprid exposure during the larval stage. Insect Biochem Mol Biol 88:12-20. doi:https://doi.org/10.1016/j.ibmb.2017.06.016

    CAS  Article  PubMed  Google Scholar 

  43. Zheng H, Powell JE, Steele MI, Dietrich C, Moran NA (2017) Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proc Natl Acad Sci U S A 114:4775-4780. doi:https://doi.org/10.1073/pnas.1701819114

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Technology (grant number 107-2313-B-005-003-MY3) and Council of Agriculture (grant number 107AS-1.2.7-ST-a8), Taiwan.

Author information

Affiliations

Authors

Contributions

M.-C. Wu conceived of this research and designed experiments; Z.-W. Peng and M.-C. Wu participated in the design of cage; K.-C. Yang and C.-H. Lin performed experiments and analysis; K.-C. Yang and M.-C. Wu wrote the paper and participated in the revisions of it. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ming-Cheng Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Une nouvelle conception de cage à abeille pour les expériences de laboratoire: évaluation nutritionnelle des régimes complémentaires chez l’abeille ( Apis mellifera ).

cage à abeille / substitut de pollen / protéine majeure de la gelée royale 1 / vitellogénine

Ein neues Design eines Bienenkäfigs für Laborexperimente: Ernährungswissenschaftliche Beurteilung von Nahrungsergänzungen bei Honigbienen ( Apis mellifera )

Bienenkäfig / Pollenergänungsmittel / major royal jelly protein 1 / Vitellogenin

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript editor: James Nieh

Supplementary Information

ESM 1

(DOCX 16.7 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, KC., Peng, ZW., Lin, CH. et al. A new design of bee cage for laboratory experiments: nutritional assessment of supplemental diets in honey bees (Apis mellifera). Apidologie (2021). https://doi.org/10.1007/s13592-020-00832-8

Download citation

Keywords

  • Bee cage
  • Bee pollen substitutes
  • Major royal jelly protein 1
  • Vitellogenin