Decline of native bees (Apidae: Euglossa) in a tropical forest of Panama

Abstract

We measured abundance, diversity, and richness of Euglossa bees (Euglossini, Apidae) in lowland semi-deciduous forest in Darién National Park, Panamá, during the wet and dry seasons in the canopy and understory for five consecutive years (2013 to 2017) using McPhail traps baited with eucalyptus oil. We found a precipitous decline in abundance and richness throughout the 5 years of our study. Alpha diversity also declined throughout the study. Abundance, species richness and alpha diversity were significantly higher in the dry than in the wet season. There were no significant differences in the diversity, richness, or abundance between the canopy and understory. Our data contrast sharply with previous long-term studies of euglossine bees which showed stable populations.

This is a preview of subscription content, log in to check access.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

References

  1. Ackerman, J. (1983) Specificity and mutual dependency of the orchid-euglossine bee interaction. Biol. J. Linn. Soc. 20 (3), 301–314.

    Google Scholar 

  2. Añino, Y., Parra, A., Gálvez, D. (2019) Are orchid bees (Apidae: Euglossini) good indicators of the state of conservation of Neotropical forests? Sociobiology 66 (1), 194–197.

    Google Scholar 

  3. Archer, M.E. (2013) The solitary wasps and bees of a suburban garden in Leicester, England, over 27 years. Entomol. Mon. Mag. 149 (1948), 93–121.

    Google Scholar 

  4. Bennett, F. (1972) Baited McPhail fruitfly traps to collect euglossine bees. J. New York Entomol. Soc. 80 (3), 137–145.

    Google Scholar 

  5. Biesmeijer, J., Roberts, S., Reemer, M., Ohlemuller, R., Edwards, M., Peeters, T., Schaffers, A., Potts, S., Kleukers, R., Thomas, C., Settele, J., Kunin, W. (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313 (5785), 351–354.

    CAS  PubMed  Google Scholar 

  6. Bommarco, R., Lundin, O., Smith, H.G., Rundlöf, M. (2012) Drastic historic shifts in bumble-bee community composition in Sweden. Proc. R. Soc. B 279 (1727), 309–315.

    PubMed  Google Scholar 

  7. Borrell, B.J. (2005) Long Tongues and Loose Niches: Evolution of Euglossine Bees and Their Nectar Flowers 1. Biotropica: The Journal of Biology and Conservation 37:664-669.

    Google Scholar 

  8. Botsch, J.C., Walter, S.T., Karubian, J., González, N., Dobbs, E.K., Brosi, B.J. (2017) Impacts of forest fragmentation on orchid bee (Hymenoptera: Apidae: Euglossini) communities in the Chocó biodiversity hotspot of northwest Ecuador. J. Insect Conserv. 21 (4), 633–643.

    Google Scholar 

  9. Bretfeld M., Ewers B.E., Hall J.S. (2018) Plant water use responses along secondary forest succession during the 2015–2016 El Niño drought in Panama. New Phytologist 219:885-889.

    PubMed  Google Scholar 

  10. Brown, M., Paxton, R. (2009) The conservation of bees: a global perspective. Apidologie 40 (3), 410–416.

    Google Scholar 

  11. Burkle, L.A., Marlin, J.C., Knight, T.M. (2013) Plant-pollinator interactions over 120 years: loss of species, co-occurrence and function. Science 339 (6127), 1611–1615.

    CAS  PubMed  Google Scholar 

  12. Colla, S.R., Packer, L. (2008) Evidence for decline in eastern North American bumblebees (Hymenoptera: Apidae), with special focus on Bombus affinis Cresson. Biodivers. Conserv. 17, 1379–1391.

    Google Scholar 

  13. Dressler, R.L. (1982) Biology of the orchid bees (Euglossini). Annu Rev Ecol Syst 13:373-394.

    Google Scholar 

  14. Eltz, T., Whitten W., Roubik D., Linsenmair K. (1999) Fragrance collection, storage, and accumulation by individual male orchid bees. J Chem Ecol 25:157-176.

    CAS  Google Scholar 

  15. Eltz, T., Sager A., Lunau K. (2005) Juggling with volatiles: exposure of perfumes by displaying male orchid bees. Journal of Comparative Physiology A 191:575-581.

    Google Scholar 

  16. Ferreira, M.G., Pinho, O.C., Balestieri, J.B.P., Faccenda, O. (2011) Fauna and stratification of male orchid bees (Hymenoptera: Apidae) and their preference for odor baits in a forest fragment. Neotrop. Entomol. 40 (6), 639-646.

    CAS  PubMed  Google Scholar 

  17. Frankie, G.W., Thorp, R.W., Newstrom-Lloyd, L.E., Rizzardi, M.A., Barthell, J.F., Griswold, T.L., Kim, J.Y., Kappagoda, S. (1998) Monitoring Solitary Bees in Modified Wildland Habitats: Implications for Bee Ecology and Conservation. Environ. Entomol. 27 (5), 1137–1148.

    Google Scholar 

  18. Frankie, G., Rizzardi, M., Vinson, S., Griswold, T. (2009) Decline in bee diversity and abundance from 1972-2004 on a flowering leguminous tree, Andira inermis in Costa Rica at the interface of disturbed dry forest and the urban environment. J. Kansas Entomol. Soc. 82 (1), 1–21.

    Google Scholar 

  19. Fürst, M.A., McMahon, D.P., Osborne, J.L., Paxton, R.J., Brown, M.J.F. (2014) Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 506, 364–366.

    PubMed  PubMed Central  Google Scholar 

  20. Giannini, T., Acosta, A., Garófalo, C., Saraiva, A., Alves-dos-santos, I., Imperatriz-Fonseca, V.L. (2012) Pollination services at risk: Bee habitats will decrease owing to climate change in Brazil. Ecol. Modell. 244, 127–131.

    Google Scholar 

  21. Goulson, D., Nicholls, E., Botías, C., Rotheray, E.L. (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347 (6229), 1255957.

    PubMed  Google Scholar 

  22. Grixti, J.C., Wong, L.T., Cameron, S.A., Favret, C. (2008) Decline of bumble bees (Bombus) in the North American Midwest. Biol. Conserv. 142 (1), 75–84.

    Google Scholar 

  23. Hallmann, C.A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Sumser, H., Ho, T., Schwan, H., Stenmans, W., Mu, A., Goulson, D., de Kroon, H. (2017) More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One 12 (10), e0185809.

    PubMed  PubMed Central  Google Scholar 

  24. Herrera, C. (2019) Complex long-term dynamics of pollinator abundance in undisturbed Mediterranean montane habitats over two decades. Ecol. Monogr. 89 (1), e01338.

    Google Scholar 

  25. Koh, I., Lonsdorf, E. V., Williams, N.M., Brittain, C., Isaacs, R., Gibbs, J., Ricketts, T.H. (2016) Modeling the status, trends, and impacts of wild bee abundance in the United States. Proc. Natl. Acad. Sci. U. S. A. 113 (1), 140–145.

    CAS  PubMed  Google Scholar 

  26. Kosior, A., Celary, W., Olejniczak, P., Fijał, J., Król, W., Solarz, W., Płonka, P. (2007) The decline of the bumble bees and cuckoo bees (Hymenoptera: Apidae: Bombini) of Western and Central Europe. Oryx 41 (1), 79–88.

    Google Scholar 

  27. Laurance, W.F., Useche, D., Rendeiro, J., Kalka, M., Bradshaw, J., Sloan, S., Laurance, S., Campbell, M., Abernethy, K., Alvarez, P., Arroyo-Rodriguez, V., Ashton, P., Benítez-Malvido, J., Blom, A., Bobo, K., Cannon, C., Cao, M., Carroll, R., Chapman, C., Coates, R., Cords, M., Danielse, F., De Dijn, B., Dinerstein, E. (2012) Averting biodiversity collapse in tropical forest protected areas. Nature 489 (7415), 290–294.

    CAS  PubMed  Google Scholar 

  28. López-Uribe, M., Oi, C., Del Lama, M. (2008) Nectar-foraging behavior of Euglossine bees (Hymenoptera: Apidae) in urban areas. Apidologie 39 (4), 410–418.

    Google Scholar 

  29. Magurran AE. (2004) Measuring biological diversity. Oxford: Blackwell Publishing. 256 p.

    Google Scholar 

  30. Margatto, C., Berno, V.O., Gonçalves, R.B., Faria Jr., L.R.R. (2019) Orchid bees (Hymenoptera, Apidae, Euglossini) are seasonal in Seasonal Semideciduous Forest fragments, southern Brazil. Pap. Avulsos Zool. 59, e20195907.

    Google Scholar 

  31. Martins, C.F., Souza, A.K.P. (2005) Estratificação vertical de abelhas Euglossina (Hymenoptera, Apidae) em uma área de Mata Atlântica, Paraíba, Brasil. Rev Bras Zool 22 (4), 913-918.

    Google Scholar 

  32. Meiners, J.M., Griswold, T.L., Carril, O.M. (2019) Decades of native bee biodiversity surveys at Pinnacles National Park highlight the importance of monitoring natural areas over time. PLoS ONE 14 (1), e0207566.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Miller-Struttmann, N.E., Geib, J.C., Franklin, J.D., Kevan, P.G., Holdo, R.M., Ebert-may, D., Lynn, A.M., Kettenbach, J.A., Hedrick, E., Galen, C. (2015) Functional mismatch in a bumble bee pollination mutualism under climate change. Nature 349 (6255), 1541–1544.

    CAS  Google Scholar 

  34. Nemésio, A. (2013) Are orchid bees at risk? First comparative survey suggests declining populations of forest-dependent species. Brazilian J. Biol. 73 (2), 367–374.

    Google Scholar 

  35. Nemésio A, Rasmussen C (2011) Nomenclatural issues in the orchid bees (Hymenoptera: Apidae: Euglossina) and an updated catalogue. Zootaxa 3006:1-42.

    Google Scholar 

  36. Nemésio, A., Santos, L.M., Vasconcelos, H.L. (2015) Long-term ecology of orchid bees in an urban forest remnant. Apidologie 46 (3), 359–368.

    Google Scholar 

  37. Nemésio, A., Silva, D., Nabout, J., Varela, S. (2016) Effects of climate change and habitat loss on a forest-dependent bee species in a tropical fragmented landscape. Insect Conserv. Divers. 9 (2), 149–160. https://doi.org/10.1111/icad.12154

    Article  Google Scholar 

  38. Oliveira MLd, Campos Lucio Antonio de Oliveira (1995) Abundance, richness and diversity of Euglossinae bees (Hymenoptera, Apidae) in “Terra Firme” continuous forest in the Central Amazon, Brazil. Rev Bras Zool 12:547-556.

    Google Scholar 

  39. Ollerton, J. (2017) Pollinator Diversity: Distribution, Ecological Function, and Conservation. Annu. Rev. Ecol. Evol. Syst. 48 (1), 353–376.

    Google Scholar 

  40. Ollerton, J., Winfree, R., Tarrant, S. (2011) How many flowering plants are pollinated by animals? Oikos 120 (3), 321–326.

    Google Scholar 

  41. Ollerton, J., Erenler, H., Edwards, M., Crockett, R. (2014) Extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes. Science 346 (6215), 1360–1362.

    CAS  PubMed  Google Scholar 

  42. Otero JP, Sallenave A. 2003. Vertical stratification of euglossine bees (Hymenoptera: Apidae) in an Amazonian forest. The Pan-pacific Entomologist, 31 Mar 2003, 79(2):151–154

  43. Packer, L., Owen, R. (2001) Population genetic aspects of pollinator decline. Conserv. Ecol. 5 (1), 4.

    Google Scholar 

  44. Pearson, D., Dressler, R. (1985) Two-year study of male orchid bee (Hymenoptera: Apidae: Euglossini) attraction to chemical baits in lowland south-eastern Peru. J. Trop. Ecol. 1 (1), 37–54.

    Google Scholar 

  45. Pemberton, R.W., Wheeler, G.S. (2006) Orchid bees don’t need orchids: evidence from the naturalization of an orchid bee in florida. Ecology 87 (8), 1995–2001.

    PubMed  Google Scholar 

  46. Peruquetti RC, Campos LdO, Coelho CDP, Abrantes CVM, Lisboa LdO (1999) Abelhas Euglossini (Apidae) de áreas de Mata Atlântica: abundância, riqueza e aspectos biológicos. Rev Bras Zool 16:101-118.

    Google Scholar 

  47. Potts, S., Biesmeijer, J., Kremen, C., Neumann, P., Schweiger, O., Kunin, W. (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25 (6), 345–353.

    PubMed  Google Scholar 

  48. Powell, A., Powell, G. (1987) Population dynamics of male euglossine bees in Amazonian forest fragments. Biotropica 19 (2), 176–179.

    Google Scholar 

  49. Pyke, G.H., Thomson, J.D., Inouye, D.W., Miller, T.J. (2016) Effects of climate change on phenologies and distributions of bumble bees and the plants they visit. Ecosphere 7 (3), e01267.

    Google Scholar 

  50. R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/

  51. Rada, S., Schweiger, O., Harpke, A., Kühn, E., Kuras, T., Settele, J., Musche, M. (2019) Protected areas do not mitigate biodiversity declines: A case study on butterflies. Divers. Distrib. 25 (2), 217–224.

    Google Scholar 

  52. Ramírez SR, Hernández C, Link A, López-Uribe MM (2015) Seasonal cycles, phylogenetic assembly, and functional diversity of orchid bee communities. Ecology and evolution 5:1896-1907.

    PubMed  PubMed Central  Google Scholar 

  53. Rocha-Filho, L., Garófalo, C. (2014) Phenological patterns and preferences for aromatic compounds by male euglossine bees (Hymenoptera, Apidae) in two coastal ecosystems of the Brazilian Atlantic Forest. Neotrop. Entomol. 43 (1), 9.

    CAS  PubMed  Google Scholar 

  54. Roubik, D. (1993) Tropical pollinators in the canopy and understory: field data and theory for stratum “Preferences.” J. Insect Behav. 6 (6), 659–673.

    Google Scholar 

  55. Roubik, D.W., 2001. Ups and downs in pollinator populations: when is there a decline? Conserv. Ecol. 5 (1), 2.

    Google Scholar 

  56. Roubik, D.W. (2004) Long-term studies of solitary bees: what the orchid bees are telling us. In: Solitary bees: Conservation, rearing, management for pollination, B. M. Freitas & J. O. Pereira (eds), Imprensa Universitária, Fortaleza, pp. 97–103

    Google Scholar 

  57. Roubik, D.W., Ackerman, J.D. (1987) Long-term ecology of euglossine orchid-bees (Apidae: Euglossini) in Panama. Oecologia 73 (3), 321–333.

    CAS  PubMed  Google Scholar 

  58. Roubik, D., Hanson, P., 2004. Orchid bees of tropical America: Biology and field guide. Instituto Nacional de Biodiversidad (INBio). Instituto Nacional de Biodiversidad (INBio), Heredia.

  59. Roubik, D.W., Villanueva-Gutiérrez, R. (2009) Invasive Africanized honey bee impact on native solitary bees: A pollen resource and trap nest analysis. Biol. J. Linn. Soc. 98 (1), 152–160.

    Google Scholar 

  60. Roubik, D., Wolda, H. (2001) Do competing honey bees matter? dynamics and abundance of native bees before and after honey bee invasion. Popul. Ecol. 43 (1), 53–62.

    Google Scholar 

  61. Sánchez-Bayo, F., Wyckhuys, K.A. G. (2019) Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232 (April 2019), 8–27.

    Google Scholar 

  62. Santos-Murgas, A., Abrego, J., López, O., Monteza, C., Osorio, M., Guardia, R., Álvarez, E., Quiroz, K., Añino, Y., Carranza, R., Villarreal, C. (2018) Abejas de las orquídeas (Hymenoptera: Apidae) del parque nacional Darién, Panamá. Tecnociencia 20 (2), 59–69.

    Google Scholar 

  63. Schulze, C.H., Linsenmair, K.E., Fiedler, K., 2001. Understorey versus canopy: patterns of vertical stratification and diversity. Plant Ecol. 153 (1-2), 133–152.

    Google Scholar 

  64. Senapathi, D., Carvalheiro, L., Biesmeijer, J., Dodson, C., Evans, R., McKerchar, M., Morton, R., Moss, E., Roberts, S., Kunin, W. (2015) The impact of over 80 years of land cover changes on bee and wasp pollinator communities in England. Proc. R. Soc. B Biol. Sci. 282 (1806), 20150294.

    Google Scholar 

  65. Shuttleworth, W., Gash, J., Lloy, C., Moore, C., Roberts, J. (1984) Daily variations of temperature and humidity within and above amazonian forest. Weather 40 (4), 102–108.

    Google Scholar 

  66. Soroye, P., Newbold, T., Kerr, J. (2020). Climate change contributes to widespread declines among bumble bees across continents. Science 367 (6478), 685–688.

    CAS  PubMed  Google Scholar 

  67. Stangler, E.S., Hanson, P.E., Steffan-Dewenter, I. (2016) Vertical diversity patterns and biotic interactions of trap-nesting bees along a fragmentation gradient of small secondary rainforest remnants. Apidologie 47 (4), 527–538.

    Google Scholar 

  68. Storck-Tonon, D., Peres, C.A. (2017) Forest patch isolation drives local extinctions of Amazonian orchid bees in a 26 years old archipelago. Biol. Conserv. 214 (October 2017), 270–277.

    Google Scholar 

  69. UNESCO World Heritage. 1981. Darien National Park. https://whc.unesco.org/en/list/159.

  70. Valtuille-Faleiro, F., Nemésio, A., Loyola, R. (2018) Climate change likely to reduce orchid bee abundance even in climatic suitable sites. Glob. Chang. Biol. 24 (6), 2272–2283.

    Google Scholar 

  71. Vilhena, P., Rocha, L., Garófalo, C. (2017) Male orchid bees (Hymenoptera: Apidae: Euglossini) in canopy and understory of Amazon Várzea floodplain forest. I. Microclimatic, seasonal and faunal aspects. Sociobiology 64 (2), 191–201.

    Google Scholar 

  72. Williams, N., Minckley, R., Silveira, F. (2001) Variation in native bee faunas and its implications for detecting community changes. Conserv. Ecol. 5 (1), 7.

    Google Scholar 

  73. Winfree, R., Aguilar, R., Vasquez, D., LeBuhn, G., Aizen, M. (2009) A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90 (8), 2068–2076.

    PubMed  Google Scholar 

  74. Wright, S.J., Calderon, O., 1995. Phylogenetic patterns among tropical flowering phenologies. J. Ecol. 83 (6), 937–948.

    Google Scholar 

Download references

Acknowledgments

We thank all the staff of the PND (Mi Ambiente) for the management of collection and lodging permits in the Rancho Frío Biological Station. We thank Steve Paton for helping us obtain the ETESA rainfall data.

Funding

We thank the Colegio de Biólogos de Panamá (COBIOPA) and the Group for Education and Sustainable Environmental Management (GEMAS) (2014–2017) for the execution of the project in the Darién National Park.

Author information

Affiliations

Authors

Contributions

Insect collection and identification by ASM and YJA. Data analysis by YJA, AVH, and ASM. Manuscript drafting by AVH, YJA, and DG. Correction of the manuscript by ASM, EAK, DG, and AVH. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dumas Gálvez.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Déclin des abeilles indigènes (Apidae: Euglossa ) dans une forêt tropicale du Panama.

abondance / déclin des insectes / pollinisateur / richesse des espèces / forêt tropicale

Rückgang von einheimischen Bienen (Apidae: Euglossa ) in einem tropischen Regenwald in Panama.

Abundanz / Insektenrückgang / Bestäuber / Artenreichtum / tropischer Regenwald

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript editor: Cedric Alaux

Electronic supplementary material

ESM 1.

(DOCX 466 kb)

ESM 2.

(XLS 11 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vega-Hildago, Á., Añino, Y., Krichilsky, E. et al. Decline of native bees (Apidae: Euglossa) in a tropical forest of Panama. Apidologie (2020). https://doi.org/10.1007/s13592-020-00781-2

Download citation

Keywords

  • abundance
  • insect decline
  • species richness
  • tropical forest
  • pollinator