, Volume 49, Issue 3, pp 430–438 | Cite as

Isolation and identification of Lactobacillus bacteria found in the gastrointestinal tract of the dwarf honey bee, Apis florea Fabricius, 1973 (Hymenoptera: Apidae)

  • Shabnam Parichehreh
  • Gholamhosein Tahmasbi
  • Alimorad Sarafrazi
  • Sohrab Imani
  • Naser Tajabadi
Original article


Recent research in bacteria-insect symbiosis has shown that lactic acid bacteria (LAB) establish symbiotic relationships with several Apis species. The current study was carried out to isolate and identify Lactobacillus bacteria housed in the gastrointestinal tract of the Asian dwarf honey bee (Apis florea), which is distributed in different regions of Iran. The current study was performed using 100 Gram-stained isolates, which were tested for catalase activity. Bacterial universal primers were used to amplify 16S rDNA genes isolated from bacterial colonies. Sequencing was done for 16S rDNA genes isolated from 43 bacteria. The phylogenetic analyses demonstrated that Lactobacillus flora found in the gastrointestinal tract of A. florea encompassed eight different phenotypes classified as three different species: L. kunkeei, L. plantarum, and L. apis. According to the specific association between bacteria and A. florea, we classified the Apis populations into three zones. Furthermore, the association of L. plantarum with insects foraging in citrus orchards might be explained by differences in nectar and pollen components resulting in the growth of different species of bacteria.


Apis florea lactic acid bacteria 16S rDNA symbiosis Iran 


Author contributions

All the authors have read and approved the submitted manuscript.


  1. Backhed, F., J.L. Sonnenburg, DA. Peterson, JI. Gordon. 2005. Host bacterial mutualism in the human intestine. Science. 307:1915–1920.CrossRefPubMedGoogle Scholar
  2. Bourtzis, K., and TA. Miller. 2003. Insect Symbiosis. CRC Press, Boca Raton.CrossRefGoogle Scholar
  3. Chung, TC., L. Axelsson, SE. Lindgren, WJ, Dobrogosz. 1989. In vitro studies on reuterin synthesis by Lactobacillus reuteri. Microb. Ecol. Health. Dis. 2: 137–144.CrossRefGoogle Scholar
  4. Coeuret, V., S. Dubernet, M. Bernardeau, M. Guegun, P. Vernouxj. 2003. Isolation, characterization and identification of lactobacilli focusing mainly on cheeses and other dairy products. Lait. 83:269–306.CrossRefGoogle Scholar
  5. Consortium, TS. 2006. Insights into social insects from the genome of the honey bee Apis mellifera. Nature. 443: 931–949.CrossRefGoogle Scholar
  6. Dillon, RJ., and VM. Dillon. 2004. The Gut Bacteria of Insects: Nonpathogenic Interactions. Annu. Rev. Entomol. 49:71–92.CrossRefPubMedGoogle Scholar
  7. Eckburg, PB., EM. Bik, CN. Bernstein, E. Purdom, L. Dethlefsen. 2005. Diversity of the human intestinal microbial flora. Science. 308:1635–1638.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Edwards, CG., KM. Haag, MD. Collins, RA. YC. Hutson Huang. 1998. Lactobacillus kunkeei sp. nov.: a spoilage organism associated with grape juice fermentations. J. Appl. Microb. 84: 698–702.CrossRefGoogle Scholar
  9. FAO/WHO. 2002. Guidelines for the Evaluation of Probiotics in Food: Joint FAO/WHO Working Group meeting. London Ontario, Canada. Available:
  10. Forsgren, E., TC. Olofsson, A. Vásquez, I. Fries. 2010. Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae. Apidologie. 41:99–108.CrossRefGoogle Scholar
  11. Gilliam, M. 1979. Microbiology of pollen and bee bread: the genus Bacillus. Apidologie. 10(3):269–274.CrossRefGoogle Scholar
  12. Hammes, W., C. Hertel. 2006. The Genera Lactobacillus and Carnobacterium. In The prokaryotes, pp. 320–403. Springer US.
  13. Hepburn, R., E. Sarah, G. Radloff, LR. Fuchus, T. Chaiyawong, G. Tahmasbi, R. Ebadi. 2005. Apis florea: morphometrics, classification and biogeography. Apidologie. 36:359–376.CrossRefGoogle Scholar
  14. Killer, S., I. Dubna, and P. Sedla. 2014. Lactobacillus apis sp. nov., from the stomach of honeybees (Apis mellifera), having an in vitro inhibitory effect on the causative agents of American and European foulbrood. Int. J. Sys. Evol. Microbiol. 64:152–157.CrossRefGoogle Scholar
  15. Kwong, W. K., & Moran, N. A. 2016. Gut microbial communities of social bees. Nature Reviews Microbiol., 14(6):374.Google Scholar
  16. Ludwig, W., and K. Schleifer. 1999. Phylogeny of bacteria beyond the 16S rRNA standard. ASM News. 65:752–757.Google Scholar
  17. Maarit, M. 2004. Lactic acid bacteria in vegetable fermentations. Fodd Science and Technology, pp. 419–430. Marcel Dekker, New York.Google Scholar
  18. Olofsson, T., and A. Vasquéz. 2008. Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Apis mellifera. Curr. Microbiol. 57:356–363.CrossRefPubMedGoogle Scholar
  19. Olofsson, TC., A. Vásquez, D. Sammataro, J. Macharia. 2011. A scientific note on the lactic acid bacterial flora within the honeybee subspecies; Apis mellifera (Buckfast), A. m. scutellata, and A. m. monticola. Apidologie. 42(6):696–699.Google Scholar
  20. Parichehreh, SH., MB. Farshineh Adl, and M. Fallahzadeh. 2013. Study and comparison of morphological characteristics of dwarf honey bees, Apis florea F. (Hymenoptera, Apidae) in Iran. J. Entomol. Res. 5(4):315–330.Google Scholar
  21. Ruttner, F. 1988. Biogeography and taxonomy of honey bees. Springer-Verlag, Berlin, 285 pp.CrossRefGoogle Scholar
  22. Sandine, WE. 1979. Role of Lactobacillus in the intestinal tract. J. Food. Prot. 42:259–262.CrossRefGoogle Scholar
  23. Servin, AL. 2004. Antagonistic activities of Lactobacilli and Bifidobacteria against microbial pathogens. FEMS Microbiol. Rev. 28: 405–440.CrossRefPubMedGoogle Scholar
  24. Settanni, L., D. Van Sinderen, J. Rossi, A. Corsetti. 2005. Rapid differentiation and in situ detection of 16 sourdough Lactobacillus species by multiplex PCR. Appl. Environ. Microbiol. 71:3049–3059.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Snell-Castro, R., J. Godon, JP. Delgenès, P. Dabert. 2005. Characterisation of the microbial diversity in a pig manure storage pit using small subunit rRNA sequence analysis FEMS Microbiol and Ecol. 52:229–242.CrossRefGoogle Scholar
  26. Tahmasebi, G, R. Ebadi, N. Tajabadi, M. Akhondi, S. Faraji. 2002. The effects of geographical and climatological conditions on the morphological variation and separation of Iranian small honeybee (Apis florea F.) populations. J. Sci. Tech. Agri. Nat. Res. 6 (2):169–175.Google Scholar
  27. Tajabadi, N, M. Mardan, M. Shuhaimi, MA. Meimandipour, L. Nateghi. 2011. Detection and identification of Lactobacillus bacteria found in the honey stomach of the giant honeybee Apis dorsata. Apidologie. 42:642–649.CrossRefGoogle Scholar
  28. Tajabadi, N., M. Mardan, F. Feizbadi, L. Nateghi, B. Rasti, YA. Manap. 2012. Weissella sp. Taj-Apis, a novel lactic acid bacterium isolated from honey. J. Food. Agri. Environ. 10:263–267.Google Scholar
  29. Tajabadi, N., M. Mardan, MY. Manap, S. Mustafa. 2013a. Molecular identification of Lactobacillus spp. isolated from the honey comb of the honey bee (Apis dorsata) by 16S rRNA gene sequencing. J. Apic. Res. 52(5): 235–241.CrossRefGoogle Scholar
  30. Tajabadi, N., M. Mardan, N. Saari, S. Mustafa, R. Bahreini, MY. Manap. 2013b. Identification of Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum from honey stomach of honeybee. Brazil. J. Microbiol. 44(3):717–722.CrossRefGoogle Scholar
  31. Talarico, TL., and WJ. Dobrogosz. 1989. Chemical characterization of an antimicrobial substance produced by Lactobacillus reuteri. Antimicrob. Age. Chemo. 33: 674–679.CrossRefGoogle Scholar
  32. Tamura, K., J. Dudley, M. Nei, S. Kumar. 2007. MEGA (4): Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596–1599.CrossRefPubMedGoogle Scholar
  33. Van Hoorde, K., T. Verstraete, P. Vandamme, G. Huys. 2008. Diversity of lactic acid bacteria in two Flemish artisan raw milk Gouda-type cheeses. Food Microbiol. 25:929–935.CrossRefPubMedGoogle Scholar
  34. Vasquez, A., TC. Olofsson, and D. Sammataro. 2009. A scientific note on the lactic acid bacterial flora in honeybees in the USA—a comparison with bees from Sweden. Apidologie. 40, 26–28.CrossRefGoogle Scholar
  35. Vasquéz, A., E. Forsgren, I. Fries, R. Paxton, E. Flaberg, L. Szekely, T. Olofsson. 2012. Symbionts as Major Modulators of Insect Health: Lactic Acid Bacteria and Honeybees. PlosOne, 7(3):1–9.Google Scholar
  36. Ventura, M., S. Flaherty, MJ. Claesson, F. Turroni, TR. Klaenhammer. 2009. Genome-scale analyses of health-promoting bacteria: probiogenomics. Nature Rev. Microbiol. 7: 61–71.CrossRefGoogle Scholar
  37. Ward, L. J., Brown, J. C., & Davey, G. P. 1994. Application of the ligase chain reaction to the detection of nisinA and nisinZ genes in Lactococcus lactis ssp. lactis. FEMS Microbiol. letters, 117(1):29–33.Google Scholar
  38. Wilson-Rich, N., M. Spivak, NH. Fefferman, PT. Starks. 2009. Genetic, Individual, and group facilitation of disease resistance in insect societies. Annu. Rev. Entomol. 54:405–423.CrossRefPubMedGoogle Scholar
  39. Yoshiyama, M., and K. Kimura. 2009. Bacteria in the gut of Japanese honeybee, Apis cerana japonica and their antagonistic effect against Paenibacillus larvae, the causal agent of American foulbrood. J. Invert. Pathol. 102:91–96.CrossRefGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  • Shabnam Parichehreh
    • 1
  • Gholamhosein Tahmasbi
    • 2
  • Alimorad Sarafrazi
    • 3
  • Sohrab Imani
    • 1
  • Naser Tajabadi
    • 2
  1. 1.Department of Agricultural Entomology, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Department of HoneybeeAnimal Science Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO)KarajIran
  3. 3.Department of Insect Taxonomy ResearchInstitute of Plant Protection Agricultural Research, Education and Extension Organization (AREEO)TehranIran

Personalised recommendations