, Volume 49, Issue 2, pp 196–208 | Cite as

Effects of neonicotinoid exposure on molecular and physiological indicators of honey bee immunocompetence

  • Elizabeth J. Collison
  • Heather Hird
  • Charles R. Tyler
  • James E. Cresswell
Original article


Bee declines have been associated with various stressors including pesticides and pathogens. We separately exposed immune-challenged adult worker honey bees (Apis mellifera L.) to two neonicotinoid pesticides, thiamethoxam (10 ppb) and imidacloprid (102 ppb), by dietary delivery. We found that whereas neonicotinoid exposure weakly affected transcriptional responses of antimicrobial genes, it did not detectably affect the physiological antimicrobial response as measured by a lytic clearance assay of haemolymph. Our findings add to the evidence that transcriptional responses in immune-related genes are not yet reliable indicators of pesticide impacts on bee health, which suggests caution in their future use as biomarkers in pesticide risk assessment.


imidacloprid thiamethoxam immunocompetence antimicrobial peptide gene expression 



E.J.C was funded by a joint University of Exeter-Fera studentship. We thank Ben Jones and Joy Kaye for assistance in setting up enzymatic and molecular assays, respectively. We gratefully acknowledge the laboratory support from numerous staff and students in the NBU and CCSS at Fera, York.


All authors conceived and designed experiments; EJC performed experiments and analysis; EJC wrote the paper and all authors participated in the revisions of it and approved the final manuscript.

Supplementary material

13592_2017_541_MOESM1_ESM.docx (326 kb)
ESM 1 (DOCX 325 kb)


  1. Alaux, C., Brunet, J.-L., Dussaubat, C., Mondet, F., Tchamitchan, S., Cousin, M., Brillard, J., Baldy, A., Belzunces, L. P., Le Conte, Y. (2010a) Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environ. Microbiol. 12, 774–782CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alaux, C., Ducloz, F., Crauser, D., Le Conte, Y. (2010b) Diet effects on honeybee immunocompetence. Biol. Lett. 6, 562–565CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alaux, C., Kemper, N., Kretzschmar, A., Le Conte, Y. (2012) Brain, physiological and behavioral modulation induced by immune stimulation in honeybees (Apis mellifera): A potential mediator of social immunity?, Brain Behav. Immun. 26, 1057–1060CrossRefPubMedGoogle Scholar
  4. Antunez, K., Martin-Hernandez, R., Prieto, L., Meana, A., Zunino, P., Higes, M. (2009) Immune suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporidia). Environ. Microbiol. 11, 2284–2290CrossRefPubMedGoogle Scholar
  5. Brandt, A., Gorenflo, A., Siede, R., Meixner, M., Büchler, R. (2016) The neonicotinoids thiacloprid, imidacloprid, and clothianidin affect the immunocompetence of honey bees (Apis mellifera L.). J. Insect Physiol. 86, 40–47CrossRefPubMedGoogle Scholar
  6. Collison, E., Hird, H., Cresswell, J., Tyler, C. (2016) Interactive effects of pesticide exposure and pathogen infection on bee health – a critical analysis. Biol. Rev. 91, 1006–1019CrossRefPubMedGoogle Scholar
  7. Core, A., Runckel, C., Ivers, J., Quock, C., Siapno, T., Denault, S., Brown, B., Derisi, J., Smith, C. D., Hafernik, J. (2012) A new threat to honey bees, the parasitic phorid fly Apocephalus borealis. PLoS ONE 7(1), e29639CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cotter, S. C., Myatt, J. P., Benskin, C. M. H., Wilson, K (2008) Selection for cuticular melanism reveals immune function and life-history trade-offs in Spodoptera littoralis. J. Evol. Biol. 21, 1744–1754CrossRefPubMedGoogle Scholar
  9. Derecka, K., Blythe, M. J., Malla, S., Genereux, D. P., Guffanti, A. et al. (2013) Transient exposure to low levels of insecticide affects metabolic networks of honeybee larvae. PLoS ONE 8(7), e68191CrossRefPubMedPubMedCentralGoogle Scholar
  10. Di Prisco, G., Cavaliere, V., Annoscia, D., Varricchio, P., Caprio, E., Nazzi, F., Gargiulo, G., Pennacchio, F. (2013) Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. Proc. Natl. Acad. Sci. U. S. A. 110, 18466–71CrossRefPubMedPubMedCentralGoogle Scholar
  11. EFSA (2012) European Food Safety Authority Panel on Plant Protection Products and their Residues: Scientific Opinion on the science behind the development of a risk assessment of Plant Protection Products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA J. 10(5) 2668CrossRefGoogle Scholar
  12. Erler, S., Popp, M., Lattorff, H. M. G. (2011). Dynamics of immune system gene expression upon bacterial challenge and wounding in a social insect (Bombus terrestris). PLoS ONE 6(3), e18126CrossRefPubMedPubMedCentralGoogle Scholar
  13. Evans, J. D. (2006) Beepath: An ordered quantitative-PCR array for exploring honey bee immunity and disease. J. Invertebr. Pathol. 93, 135–139CrossRefPubMedGoogle Scholar
  14. Evans, J. D., Aronstein, K., Chen, Y. P., Hetru, C., Imler, J. L., Jiang, H., Kanost, M., Thompson, G. J., Zou, Z., Hultmark, D. (2006) Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol. Biol. 15, 645–656CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gätschenberger, H., Azzami, K., Tautz, J., Beier, H. (2013) Antibacterial immune competence of honey bees (Apis mellifera) is adapted to different life stages and environmental risks. PLoS ONE 8(6), e66415CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gillespie, J. P., Kanost, M. R. & Trenczek, T. (1997) Biological mediators of insect immunity. Annu. Rev. Entomol. 42, 611–643Google Scholar
  17. Gregorc, A., Evans, J. D., Scharf, M., Ellis, J. D. (2012) Gene expression in honey bee (Apis mellifera) larvae exposed to pesticides and Varroa mites (Varroa destructor). J. Insect Physiol. 58, 1042–1049CrossRefPubMedGoogle Scholar
  18. Kanbar, G., Engels, W. (2003) Ultrastructure and bacterial infection of wounds in honey bee (Apis mellifera) pupae punctured by Varroa mites. Parasitol. Res. 90, 349–354CrossRefPubMedGoogle Scholar
  19. Klaudiny, J., Albert, S., Bachanova, K., Kopernicky, J., Simuth, J. (2005) Two structurally different defensin genes, one of them encoding a novel defensin isoform, are expressed in honeybee Apis mellifera. Insect Biochem. Mol. Biol. 35, 11–22CrossRefPubMedGoogle Scholar
  20. Köhler, A., Pirk, C. W. W., Nicolson, S. W. (2012) Simultaneous stressors: Interactive effects of an immune challenge and dietary toxin can be detrimental to honeybees. J. Insect Physiol. 58, 918–923CrossRefPubMedGoogle Scholar
  21. Korner, P., Schmid-Hempel, P. (2004) In vivo dynamics of an immune response in the bumble bee Bombus terrestris. J. Invertebr. Pathol. 87, 59–66CrossRefPubMedGoogle Scholar
  22. Laughton, A. M., Boots, M., Siva-Jothy, M. T. (2011) The ontogeny of immunity in the honey bee, Apis mellifera L. following an immune challenge. J. Insect Physiol. 57, 1023–1032CrossRefPubMedGoogle Scholar
  23. Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., Kunin, W. E. (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353CrossRefPubMedGoogle Scholar
  24. Riddell, C. E., Sumner, S., Adams, S., Mallon, E. B. (2011) Pathways to immunity: temporal dynamics of the bumblebee (Bombus terrestris) immune response against a trypanosomal gut parasite. Insect Mol. Biol. 20, 529–540CrossRefPubMedGoogle Scholar
  25. Stoner, K. A., Eitzer, B. D. (2012) Movement of soil-applied imidacloprid and thiamethoxam into nectar and pollen of squash (Cucurbita pepo). PLoS ONE 7(6), e39114CrossRefPubMedPubMedCentralGoogle Scholar
  26. Yang, X. L., Cox-Foster, D. L. (2005) Impact of an ectoparasite on the immunity and pathology of an invertebrate: Evidence for host immunosuppression and viralGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France SAS 2017

Authors and Affiliations

  1. 1.FeraYorkUK
  2. 2.Biosciences, College of Life and Environmental SciencesUniversity of ExeterExeterUK

Personalised recommendations