, Volume 49, Issue 2, pp 151–161 | Cite as

Morphological similarity of widely separated populations of two Euglossini (Hymenoptera; Apidae) species based on geometric morphometrics of wings

  • Marina Lopes Grassi-Sella
  • Carlos Alberto Garófalo
  • Tiago Mauricio Francoy
Original article


Euglossini bees are able to fly long distances, which could help to maintain gene flow among widely separated populations. In order to investigate if different environmental conditions affect morphological variation in Euglossa annectans and Euglossa truncata, we analyzed the patterns of venation of the forewings of 310 individuals, sampled in the same six locations for the two species. Populations from the two species clustered in a similar way, following the phytophysiognomy of the sampling sites. These populations also presented little or no population structure. Based on our results, we suggest that the forest fragmentation is not a problem for these species. The tendency of samples to group based on site phytophysiognomy can be explained by phenotypic plasticity or local adaptations.


Euglossini orchid bees geometric morphometrics forest fragmentation 



The authors are grateful to FAPESP (Proc. 2011/07857-9 to TMF) and NAP BioComp (University of São Paulo) for financial support. Dr. David de Jong helped us to improve the English of the manuscript.


MLGS, CAG, and TMF conceived the research and designed experiments; MLGS performed the analysis; MLGS, CAG, and TMF wrote the paper and participated in the revisions of it.

Supplementary material

13592_2017_536_Fig6_ESM.gif (100 kb)
Supplementary Figure S1

Scatterplot of Euglossa annectans individual scores from the canonical variant analysis of landmarks. See legend to Figure 1 for abbreviations. (GIF 99 kb)

13592_2017_536_MOESM1_ESM.tif (181 kb)
High resolution image (TIFF 180 kb)
13592_2017_536_MOESM2_ESM.png (74 kb)
Supplementary Figure S2 Scatterplot of Euglossa truncata individual scores from the canonical variant analysis of landmarks. See legend to Figure 1 for abbreviations. (PNG 73 kb)


  1. Ackerman J.D. (1983) Specificity and mutual dependency of the orchid-euglossine bee interaction. Biol. J. Linn. Soc. 20, 301–314.CrossRefGoogle Scholar
  2. Ackerman J.D., Mesler M.R., Lu K.L., Montalvo A.M. (1982) Food-foraging behavior of male Euglossini (Hymenoptera: Apidae): vagabonds or trapliners? Biotropica 14, 241–248.CrossRefGoogle Scholar
  3. Armbruster W.S., Webster G. (1979) Pollination of two species of Dalechampia (Euphorbiaceae) in Mexico by euglossine bees. Biotropica 11, 278–283.CrossRefGoogle Scholar
  4. Bischoff L., Schroeder S., Misof B. (2009) Differentiation and range expansion of North American squash bees Peponapis pruinosa (Apidae: Apiformes) populations assessed by geometric wing morphometry. Ann. Entomol. Soc. Am. 102, 60–69.CrossRefGoogle Scholar
  5. Bonatti V., Simões Z.L.P., Franco F.F., Francoy T.M. (2014) Evidence of at least two evolutionary lineages in Melipona subnitida (Apidae, Meliponini) suggested by mtDNA variability and geometric morphometrics of forewings. Naturwissenschaften 101, 17–24CrossRefPubMedGoogle Scholar
  6. Brook, B.W., Tonkyn, D.W., O’Grady, JJ , Frankham ,R. (2002) Contribution of inbreeding to extinction risk in threatened species. Conserv Ecol 6, (accessed on 17 May 2016)
  7. Brosi B.J. (2009). The effects of forest fragmentation on euglossine bee communities (Hymenoptera: Apidae: Euglossini). Biol. Conserv. 142, 414–423.CrossRefGoogle Scholar
  8. Buchmann S.L. (1981) Preliminary anthecological observations on Xiphidium caeruleum Aubl. (Monocotyledonae: Haemodoraceae) in Panama. J. Kansas Entomol. Soc. 53, 685–699.Google Scholar
  9. Cane, J.H. (2001) Habitat fragmentation and native bees: a premature verdict? Conserv Ecol 5 [online] URL: Accessed 17 May 2016
  10. Cappellari S.C., Harter-Marques B., Aumeier P., Engels W. (2009) Mecardonia tenella (Plantaginaceae) attracts oil-, perfume-, and pollen-gathering bees in Southern Brazil. Biotropica 41, 721–729.CrossRefGoogle Scholar
  11. Carnaval A.C., Hickerson M.J., Haddad C.F., Rodrigues M.T., Moritz C. (2009) Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science 323, 785–789.CrossRefPubMedGoogle Scholar
  12. Cerântola N.D.C.M., Oi C.A., Cervini M., Del Lama M.A. (2011) Genetic differentiation of urban populations of Euglossa cordata from the state of São Paulo, Brazil. Apidologie 42, 214–222CrossRefGoogle Scholar
  13. De Souza D.A., Wang Y., Kaftanoglu O., De Jong D., Amdam G.V., Gonçalves L.S., Francoy T.F. (2015) Morphometric identification of queens, workers and intermediates in in vitro reared honey bees (Apis mellifera). PLoS ONE 10, 1–14. Doi: 10.1371/journal.pone.0123663
  14. Debat V., Bégin M., Legout H., David J.R. (2003) Allometric and nonallometric components of Drosophila wing shape respond differently to developmental temperature. Evolution 57, 2773–2784.CrossRefPubMedGoogle Scholar
  15. Dressler R.L. (1982) Biology of the orchid bees (Euglossini). Annu. Rev. Ecol. Syst. 13, 373–394CrossRefGoogle Scholar
  16. Eltz T., Schmid M., Roubik D.W. (2003) Fragrances, male display and mating behavior of Euglossa hemichlora—a flight cage experiment. Physiol. Entomol. 28, 251–260.CrossRefGoogle Scholar
  17. Eltz T., Sager A., Lunau K. (2005) Juggling with volatiles: exposure of perfumes by displaying male orchid bees. J. Comp. Physiol. A. 191, 575–581.CrossRefGoogle Scholar
  18. Fordyce J.A. (2006). The evolutionary consequences of ecological interactions mediated through phenotypic plasticity. J. Exp. Biol. 209, 2377–2383.CrossRefPubMedGoogle Scholar
  19. Francisco F.O., Nunes-Silva P., Francoy T.M.,Wittmann D., Imperatriz-Fonseca V.L., Arias, M.C., Morgan, E. D. (2008) Morphometrical, biochemical and molecular tools for assessing biodiversity. An example in Plebeia remota (Holmberg, 1903) (Apidae, Meliponini). Insect. Soc. 55, 231–237.CrossRefGoogle Scholar
  20. Francoy T.M., Silva R.A.O., Nunes-Silva P., Menezes C., Imperatriz-Fonseca V.L. (2009) Gender identification of five genera of stingless bees (Apidae, Meliponini) based on wing morphology. Genet. Mol. Res. 8, 207–214.CrossRefPubMedGoogle Scholar
  21. Francoy T.M., Grassi M.L., Imperatriz-Fonseca V.L., de Jesus May-Itza W., & Quezada-Euán J.J.G. (2011). Geometric morphometrics of the wing as a tool for assigning genetic lineages and geographic origin to Melipona beecheii (Hymenoptera: Meliponini). Apidologie 42, 499–507.CrossRefGoogle Scholar
  22. Francoy, T.M.,Franco, F.F., Roubik, D.W. (2012). Integrated landmark and outline-based morphometric methods efficiently distinguish species of Euglossa (Hymenoptera, Apidae, Euglossini). Apidologie 43, 609–617.CrossRefGoogle Scholar
  23. Frankham R. (2003) Genetics and conservation biology. C. R. Biol. 326, 22–29.CrossRefGoogle Scholar
  24. Hurtado-Burillo M., Laura J., May-Itzá W.J., Quezada-Euán J.J., Ruiz C., De la Rúa P. (2016) A geometric morphometric and microsatellite analyses of Scaptotrigona mexicana and S. pectoralis (Apidae: Meliponini) sheds light on the biodiversity of Mesoamerican stingless bees. J. Insect Conserv. 20, 753–763CrossRefGoogle Scholar
  25. Janzen D.H. (1971) Euglossine bees as long-distance pollinators of tropical plants. Science 171, 203–205.CrossRefPubMedGoogle Scholar
  26. Klingenberg C.P. (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol. Ecol. Resour. 11, 353–357.CrossRefPubMedGoogle Scholar
  27. Knudsen J.T., Mod S.A. (1996) Floral scents and pollination in neotropical Lecythidaceae. Biotropica 28, 42–60.CrossRefGoogle Scholar
  28. Kroodsma D.E. (1975) Flight distances of male euglossine bees in orchid pollination. Biotropica 7, 71–72.CrossRefGoogle Scholar
  29. Melo G.A. (1995) Fragrance gathering by Euglossa males in flowers of Ternstroemia dentata (Theaceae) (Hymenoptera: Apidae: Euglossinae). Entomol. Gen. 19, 281–283.CrossRefGoogle Scholar
  30. Mendes M.F.M., Francoy T.M., Nunes-Silva P., Menezes C., Imperatriz-Fonseca V.L. (2007) Intra-populational variability of Nannotrigona testaceicornis Lepeletier 1836 (Hymenoptera, Meliponini) using relative warp analysis. Biosci. J. 23, 147–152.Google Scholar
  31. Michener C.D. (2000) The bees of the world. The John Hopkins Univ Press, Baltimore, p 913.Google Scholar
  32. Milet-Pinheiro P., Schlindwein C. (2005) Do euglossine males (Apidae, Euglossini) leave tropical rainforest to collect fragrances in sugarcane monocultures? Rev. Bras. Zool. 22, 853–858.CrossRefGoogle Scholar
  33. Miller, M.P. (1997) Tools for population genetic analyses (TFPGA): a windows program for the analysis of allozyme and molecular population genetic data. Computer software distributed by author, 4, 157Google Scholar
  34. Myers N., Mittermeier R.A., Mittermeier C.G., Fonseca G.A.B., Kent J. (2000) Biodiversity hotspots for conservation priorities. Nature 403, 853–858.CrossRefPubMedGoogle Scholar
  35. Nogueira P.C.D.L., Marsaioli A.J., Amaral M.D.C.E., Bittrich V. (1998) The fragrant floral oils of Tovomita species. Phytochemistry 49, 1009–1012.CrossRefGoogle Scholar
  36. O’Grady J.J., Reed D.H., Brook B.W., Frankham R. (2008) Extinction risk scales better to generations than years. Anim. Conserv. 11, 442–451.CrossRefGoogle Scholar
  37. Oleksa A., Tofilski A. (2014) Wing geometric morphometrics and microsatellite analysis provide similar discrimination of honey bee subspecies. Apidologie 46, 49–60.CrossRefGoogle Scholar
  38. Oliveira M.L.D. (2006) Três novas espécies de abelhas da Amazônia pertencentes ao gênero Eulaema (Hymenoptera: Apidae: Euglossini). Acta Amaz 36, 121–128.CrossRefGoogle Scholar
  39. Oliveira M.L.D., Nemésio, A. (2003) Exaerete lepeletieri (Hymenoptera: Apidae: Apini: Euglossina): a new cleptoparasitic bee from Amazonia. Lundiana 4, 117–120.Google Scholar
  40. Pokorny, T., Loose, D., Dyker, G., Quezada-Euán, JJG., Eltz, T. (2015) Dispersal ability of male orchid bees and direct evidence for long-range flights. Apidologie 46: 224–237.CrossRefGoogle Scholar
  41. Powell A., Powell N.V. (1987) Population dynamics of male euglossine bees in amazonian forest fragments. Biotropica 19, 176–179.CrossRefGoogle Scholar
  42. Ramírez S., Dressler R.L., Ospina M.( 2002) Abejas euglosinas (Hymenoptera: Apidae) de la Región Neotropical: Listado de especies con notas sobre su biología. Biota Colombiana 3, 7–118.Google Scholar
  43. Rebêlo J.M.M., Garófalo C.A. (1997) Comunidades de machos de Euglossini (Hymenoptera: Apidae) em Matas Semidecíduas do Nordeste do Estado de São Paulo. Ann. Soc. Entomol. Brasil 26, 243–255.CrossRefGoogle Scholar
  44. Rocha-Filho L.C., Cerântola N.C.M., Garófalo C.A., Imperatriz-Fonseca V.L., Del Lama M.A. (2013) Genetic differentiation of the Euglossini (Hymenoptera, Apidae) populations on a mainland coastal plain and an island in southeastern Brasil. Genetica 141, 65–74.CrossRefPubMedGoogle Scholar
  45. Rohlf F.J. (2008) tpsDig version 2.12. Department of Ecology and Evolution State University of New York Stony BrookGoogle Scholar
  46. Roubik D., Hanson P. (2004) Orchid bees of tropical America: biology and field guide. Instituto Nacional de Biodiversidad (INBio), Heredia.Google Scholar
  47. Silva F.L., Sella M.L. G., Francoy T.M., Costa A.H.R. (2015). Evaluating classification and feature selection techniques for honeybee subspecies identification using wing images. Comput. Electron. Agric. 114, 68–77.CrossRefGoogle Scholar
  48. Siqueira-Filho J.A., Machado I.C. (2008) Flowering phenology and pollination ecology of Cryptanthus dianae Leme: a case of flower fragrance-collecting by Euglossinae bees in Bromeliaceae. Selbyana 29, 226–232.Google Scholar
  49. Soares A.A., Campos L.A.O., Vieira M.F., Melo G.A.R. (1989) Relações entre Euglossa (Euglossella) mandibularis Friese, 1899 (Hymenoptera, Apidae, Euglossini) e Cyphomandra calycina (Solanaceae). Cienc. Cult. 41, 903–905.Google Scholar
  50. Souza R.O., Del Lama M.A., Cervini M., Mortari N., Eltz T., Zimmermann Y., Bach C., Brosi B.J., Suni S., Quezada-Euán J.J.G., Paxton R.J. (2010) Conservation genetics of neotropical pollinators revisited: microsatellite analysis suggests that diploid males are rare in orchid bees. Evolution 64, 3318–3326.CrossRefPubMedGoogle Scholar
  51. Spielman D., Brook B.W., Frankham R. (2004) Most species are not driven to extinction before genetic factors impact them. Proc. Natl. Acad. Sci. 101, 15261–15264.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Suni S.S., Brosi B.J.(2012) Population genetics of orchid bees in a fragmented tropical landscape. Conserv. Genet. 13 323–332.CrossRefGoogle Scholar
  53. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood evolutionary distance and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Teichert H., Dötterl S., Zimma B., Ayasse M., Gottsberger G. (2009) Perfume-collecting male euglossine bees as pollinators of a basal angiosperm: the case of Unonopsis stipitata (Annonaceae). Plant Biol. 11, 29–37.CrossRefPubMedGoogle Scholar
  55. Tonhasca A., Albuquerque G.S., Blackmer J.L. (2003) Dispersal of euglossine bees between fragments of the Brazilian Atlantic Forest. J. Trop. Ecol. 19, 99–102.CrossRefGoogle Scholar
  56. Via S., Gomulkiewicz R., De Jong G., Scheiner S.M., Schlichting C.D., Van Tienderen P.H. (1995) Adaptive phenotypic plasticity: consensus and controversy. Trends Ecol. Evol. 10, 212–217.CrossRefPubMedGoogle Scholar
  57. Victor, M.A.M. 1975. A devastação florestal. Sociedade Brasileira de Silvicultura. São Paulo, 48p.Google Scholar
  58. Whitman, D.W., Agrawal, A.A. (2009) What is phenotypic plasticity and why is it important? In: Phenotypic plasticity of insects, DW Whitman and TN Ananthakrishnan (Eds.), pp. 1–63Google Scholar
  59. Wikelski M., Moxley J., Eaton-Mordas A., López-Uribe M.M., Holland R., Moskowitz D., Roubik, D.W., Kays, R. (2010) Large-range movements of neotropical orchid bees observed via radio telemetry. PLoS ONE 5: e10738.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Williams N.H., Dressler R.L. (1976) Euglossine pollination of Spathiphyllum (Araceae). Selbyana 1, 349–356.Google Scholar
  61. Zayed A. (2009) Bee genetics and conservation. Apidologie 40, 237–262.CrossRefGoogle Scholar
  62. Zimmermann Y., Schorkopf D.L.P., Moritz R.F.A., Pemberton R.W., Quezada-Euan J.J.G., Eltz T. (2011) Population genetic structure of orchid bees (Euglossini) in anthropogenically altered landscapes. Conserv. Genet. 12, 1183–1194.CrossRefGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France SAS 2017

Authors and Affiliations

  1. 1.Departamento de Genética, Faculdade de Medicina de Ribeirão PretoUniversidade de São PauloSão PauloBrazil
  2. 2.Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão PretoUniversidade de São PauloSão PauloBrazil
  3. 3.Escola de Artes, Ciências e HumanidadesUniversidade de São PauloSão PauloBrazil

Personalised recommendations