Marker integration and development of Fluidigm/KASP assays for high-throughput genotyping of radish

Abstract

Radish (Raphanus sativus L.) is a representative root crop of the Brassicaceae family and is important to the vegetable seed industry in East Asia. Due to its agronomic importance, various molecular markers, genetic maps, genomic resources, and genome assemblies of radish have been developed during the past decade. Marker integration and comparative mapping using these resources will accelerate genetic improvements in radish cultivars. With the goal of establishing a marker-based high-throughput genetic analysis tool, we integrated 3765 nonredundant genetic markers into the Rs1.0 reference genome and converted them into 1182 single nucleotide polymorphism (SNP) markers via whole-genome resequencing data of the mapping parents ‘WK10039’ and ‘WK10024’. A genetic map covering 721.3 cM with 768 framework loci was constructed by analyzing these SNP conversion markers in the F2 mapping population, which was composed of 93 individuals. Comparison of this map with the Rs1.0 reference genome and other linkage maps showed the physical and genetic correlations of the markers. To develop a high-throughput genotyping system for large accessions or populations with smaller numbers of SNPs, 674 Fluidigm and 68 kompetitive allele-specific PCR (KASP) markers were validated. Application of the 68 KASP assays to 127 commercial cultivars enabled successful identification and classification of genotypes; 11 KASP markers constituted the minimum marker set. The SNP markers used to construct the genetic maps will be a useful resource in research on radish and should lead to low-cost, accurate, and high-throughput genotyping platforms.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Asamizu E, Ichihara H, Nakaya A, Nakamura Y, Hirakawa H, Ishii T, Tamura T, Fukami-Kobayashi K, Nakajima Y et al (2014) Plant genome database Japan (PGDBj): a portal website for the integration of plant genome-related databases. Plant Cell Physiol 55:e8

    CAS  Article  Google Scholar 

  2. Cheon K-S, Baek J, Cho Y-i, Jeong Y-M, Lee Y-Y, Oh J, Won Y, Kang D-Y, Oh H et al (2018) Single nucleotide polymorphism (SNP) discovery and Kompetitive Allele-Specific PCR (KASP) marker development with Korean Japonica rice varieties. Plant Breed Biotechnol 6:391–403

    Article  Google Scholar 

  3. Cheon K-S, Jeong Y-M, Lee Y-Y, Oh J, Kang D-Y, Oh H, Kim S, Kim N, Lee E et al (2019) Kompetitive Allele-Specific PCR marker eevelopment and quantitative trait locus mapping for Bakanae disease resistance in Korean Japonica rice varieties. Plant Breed Biotechnol 7:208–219

    Article  Google Scholar 

  4. Jeong Y-M, Chung W-H, Chung H, Kim N, Park B-S, Lim K-B, Yu H-J, Mun J-H (2014a) Comparative analysis of the radish genome based on a conserved ortholog set (COS) of Brassica. Theor Appl Genet 127:1975–1989

    CAS  Article  Google Scholar 

  5. Jeong Y-M, Chung W-H, Mun J-H, Kim N, Yu H-J (2014b) De novo assembly and characterization of the complete chloroplast genome of radish (Raphanus sativus L.). Gene 551:39–48

    CAS  Article  Google Scholar 

  6. Jeong Y-M, Chung W-H, Choi A, Mun J-H, Kim N, Yu H-J (2016a) The complete mitochondrial genome of cultivated radish WK10039 (Raphanus sativus L.). Mitochondrial DNA 27:941–942

    CAS  Article  Google Scholar 

  7. Jeong Y-M, Kim N, Ahn B, Oh M, Chung W-H, Chung H, Jeong S, Lim K-B, Hwang Y-J et al (2016b) Elucidating the triplicated ancestral genome structure of radish based on chromosome-level comparison with the Brassica genomes. Theor Appl Genet 129:1357–1372

    CAS  Article  Google Scholar 

  8. Jo J, Purushotham P, Han K, Lee H, Nah G, Kang B (2017) Development of a genetic map for onion (Allium cepa L.) using reference-free genotyping-by-sequencing and SNP assays. Front Plant Sci 8:1606

    Article  Google Scholar 

  9. Kim K, Chung H, Cho G, Ma K, Chandrabalan D, Gwag J, Kim T, Cho E, Park Y (2007) PowerCore: a program applying the advanced M strategy with a heuristic search for establishing core sets. Bioinformatics 23:2155–2162

    CAS  Article  Google Scholar 

  10. Kim N, Jeong Y-M, Jeong S, Kim G-B, Baek S, Kwon Y-E, Cho A, Choi S-B, Kim J et al (2016) Identification of candidate domestication regions in the radish genome based on high-depth resequencing analysis of 17 genotypes. Theor Appl Genet 129:1797–1814

    Article  Google Scholar 

  11. Kitashiba H, Li F, Hirakawa H, Kawanabe T, Zou ZW, Hasegawa Y, Tonosaki K, Shirasawa S, Fukushima A et al (2014) Draft sequences of the radish (Raphanus sativus L.) genome. DNA Res 21:481–490

    CAS  Article  Google Scholar 

  12. Lee Y-J, Mun J-H, Jeong Y-M, Joo S-H, Yu H-J (2018) Assembly of a radish core collection for evaluation and preservation of genetic diversity. Hort Environ Biotechnol 59:711–721

    Article  Google Scholar 

  13. Li F, Hasegawa Y, Saito M, Shirasawa S, Fukushima A, Ito T, Fujii H, Kishitani S, Kitashiba H et al (2011) Extensive chromosome homoeology among Brassiceae species were revealed by comparative genetic mapping with high-density EST-based SNP markers in radish (Raphanus sativus L.). DNA Res 18:401–411

    CAS  Article  Google Scholar 

  14. Liu C, Wang S, Xu W, Liu X (2017) Genome-wide transcriptome profiling of radish (Raphanus sativus L.) in response to vernalization. PLoS ONE 12:e0177594

    Article  Google Scholar 

  15. Mitsui Y, Shimomura M, Komatsu K, Namiki N, Shibata-Hatta M, Imai M, Katayose Y, Mukai Y, Kanamori H et al (2015) The radish genome and comprehensive gene expression profile of tuberous root formation and development. Sci Rep 5:10835

    CAS  Article  Google Scholar 

  16. Moghe G, Hufnagel D, Tang H, Xiao Y, Dworkin I, Town C, Conner J, Shiu S (2014) Consequences of whole-genome triplication as revealed by comparative genomic analyses of the wild radish Raphanus raphanistrum and three other Brassicaceae species. Plant Cell 26:1925–1937

    CAS  Article  Google Scholar 

  17. Mun J-H, Chung H, Chung W-H, Oh M, Jeong Y-M, Kim N, Ahn B-O, Park B-S, Park S et al (2015) Construction of a reference genetic map of Raphanus sativus based on genotyping by whole-genome resequencing. Theor Appl Genet 128:259–272

    CAS  Article  Google Scholar 

  18. Nadeem M, Nawaz M, Shahid M, Doğan Y, Comertpay G, Yıldız M, Hatipoğlu R, Ahmad F, Alsaleh A et al (2018) DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnol Biotechnol Equip 32:261–285

    CAS  Article  Google Scholar 

  19. Nie S, Li C, Xu L, Wang Y, Huang D, Muleke E, Sun X, Xie Y, Liu L (2016) De novo transcriptome analysis in radish (Raphanus sativus L.) and identification of critical genes involved in bolting and flowering. BMC Genom 17:389

    Article  Google Scholar 

  20. Semagn K, Babu R, Hearne S, Olsen M (2014) Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed 33:1–14

    CAS  Article  Google Scholar 

  21. Shen D, Sun H, Huang M, Zheng Y, Li X, Fei Z (2013) RadishBase: a database for genomics and genetics of radish. Plant Cell Physiol 54:e3

    CAS  Article  Google Scholar 

  22. Shirasawa K, Oyama M, Hirakawa H, Sato S, Tabata S, Fujioka T, Kimizuka-Takagi C, Sasamoto S, Watanabe A et al (2011) An EST-SSR linkage map of Raphanus sativus and comparative genomics of the Brassicaceae. DNA Res 18:221–232

    CAS  Article  Google Scholar 

  23. Singh P, Tripathi S, Somani K (2001) Hybrid seed production of radish (Raphanus sativus L.). J New Seeds 3:51–58

    Article  Google Scholar 

  24. Thomson M (2014) High-throughput SNP genotyping to accelerate crop improvement. Plant Breed Biotechnol 2:195–212

    Article  Google Scholar 

  25. van Ooijen J (2006) JoinMap® 4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma B V, Wageningen

    Google Scholar 

  26. Voorrips R (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Heredity 93:77–78

    CAS  Article  Google Scholar 

  27. Wang S, Wang X, He Q, Liu X, Xu W, Li L, Gao J, Wang F (2012) Transcriptome analysis of the roots at early and late seedling stages using Illumina paired-end sequencing and development of EST-SSR markers in radish. Plant Cell Rep 31:1437–1447

    CAS  Article  Google Scholar 

  28. Wang Y, Pan Y, Liu Z, Zhu X, Zhai L, Xu L, Yu R, Gong Y, Liu L (2013) De novo transcriptome sequencing of radish (Raphanus sativus L.) and analysis of major genes involved in glucosinolate metabolism. BMC Genom 14:836

    CAS  Article  Google Scholar 

  29. Xiaohui Z, Zhen Y, Shiyoung M, Yang Q, Xinhua Y, Xiaohua C, Feng C, Zhangyan W, Yuyan S et al (2015) A de novo genome of a Chinses radish cultivar. Hort Plant J 1:155–164

    Google Scholar 

  30. Xie Y, Ye S, Wang Y, Xu L, Zhu X, Yang J, Feng H, Yu R, Karanja B et al (2015) Transcriptome-based gene profiling provides novel insights into the characteristics of radish root response to Cr stress with next-generation sequencing. Front Plant Sci 6:202

    PubMed  PubMed Central  Google Scholar 

  31. Xu Y (2010) Molecular plant breeding. CABI International, Wallingford

    Google Scholar 

  32. Yu R, Xu L, Zhang W, Wang Y, Luo X, Wang R, Zhu X, Xie Y, Karanja B et al (2016) De novo taproot transcriptome sequencing and analysis of major genes involved in sucrose metabolism in radish (Raphanus sativus L.). Front Plant Sci 7:585

    PubMed  PubMed Central  Google Scholar 

  33. Yu H-J, Baek S, Lee Y-J, Cho A, Mun J-H (2019) The radish genome database (RadishGD): An integrated information resource for radish genomics. Database 2019:baz009

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Next-Generation Biogreen21 program (Grant No. PJ013194), the National Research Foundation of Korea (Grant No. NRF-2017R1D1A1B06029741), and the Catholic University of Korea (Grant No. M-2019-B0014-003).

Author information

Affiliations

Authors

Contributions

JHM and HJY planned the project, designed the research, analyzed data, and wrote the manuscript. YMJ performed the experiments, analyzed data, and wrote the manuscript. YJL, BY, and AC performed the experiments and analyzed data.

Corresponding author

Correspondence to Jeong-Hwan Mun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Sung-Chur Sim.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Jeong, Y., Lee, Y. et al. Marker integration and development of Fluidigm/KASP assays for high-throughput genotyping of radish. Hortic. Environ. Biotechnol. (2020). https://doi.org/10.1007/s13580-020-00253-7

Download citation

Keywords

  • Radish
  • Marker integration
  • Single nucleotide polymorphism
  • Genotype
  • High-throughput assay