Horticulture, Environment, and Biotechnology

, Volume 59, Issue 2, pp 239–249 | Cite as

Molecular characterization of pomegranate (Punica granatum L.) accessions from Fars Province of Iran using microsatellite markers

  • Abdolkarim Zarei
  • Amir Sahraroo
Research Report Genetics and Breeding


Pomegranate is a long-cultivated fruit tree believed to have originated in Iran. In the present study, 16 preselected nuclear microsatellite markers, or simple sequence repeats (SSRs), were analyzed in 50 pomegranate (Punica granatum L.) accessions from five regions in Fars province of Iran. Each SSR loci was polymorphic and produced 48 fragments in the studied samples. The mean expected and observed heterozygosity of the 16 SSR loci was 0.33 and 0.48, respectively. The polymorphic information content ranged from 0.18 to 0.58 with an average of 0.41. There were some differences regarding diversity indices among populations, and several private alleles were detected in different populations, indicating the importance of these accessions for genetic conservation. Cluster analysis using SSR data grouped genotypes largely based on their geographical origins. Analysis of molecular variance showed that most of the genetic variation was among populations. Genetic synonymy was observed in some pomegranate accessions located across geographical regions. A relatively high level of genetic admixture was found among accessions from different regions, suggesting that there is a high level of genetic exchange between individual genotypes. This work assesses the genetic diversity and population structure of pomegranates in Fars province, which assists in future conservation and breeding programs.


Microsatellite markers Punica granatum L. Accessions Loci Private alleles 



The authors thank Mr. B. Sabahi for providing facilities to collect genotypes from different locations. Also, we thank Jahrom University and University of Guilan for supporting this work.

Supplementary material

13580_2018_19_MOESM1_ESM.docx (31 kb)
Supplementary material 1 (DOCX 30 kb)


  1. Anonymous (2013) Agriculture statistic, volume III, horticultural crops. Iran’s Ministry of Agriculture (in Farsi)Google Scholar
  2. Aradhya M, Woeste K, Velasco D (2010) Genetic diversity, structure and differentiation in cultivated walnut (Juglans regia L.). Acta Hort 861:127–132CrossRefGoogle Scholar
  3. Aranzana MJ, García-Mas J, Carbó J, Arús P (2002) Development and variability analysis of microsatellite markers in peach. Plant Breed 121:87–92CrossRefGoogle Scholar
  4. Bassam BJ, Caetano-Anolles G (1993) Silver staining of DNA in polyacrylamide gels. Appl Biochem Biotechnol 42:181–188CrossRefGoogle Scholar
  5. Bouhadida M, Casas AM, Moreno MA, Gogorcena Y (2007) Molecular characterization of Miraflores peach variety and relatives using SSRs. Sci Hortic 111:140–145CrossRefGoogle Scholar
  6. Courtois B, Frouin J, Greco R, Bruschi G, Droc G, Hamelin C, Ruiz M, Clément G, Evrard JC, Van Coppenole S (2012) Genetic diversity and population structure in a European collection of rice. Crop Sci 52:1663–1675CrossRefGoogle Scholar
  7. Curro S, Caruso M, Distefano G, Gentile A, La Malfa S (2010) New microsatellite loci for pomegranate, Punica granatum (Lythraceae). Am J Bot 97:e58–e60. CrossRefPubMedGoogle Scholar
  8. Ebrahimi A, Zarei A, Lawson S, Woeste KE, Smulders MJM (2016) Genetic diversity and genetic structure of Persian walnut (Juglans regia) accessions from 14 European, African, and Asian countries using SSR markers. Tree Genet Genomes 12:114. CrossRefGoogle Scholar
  9. Ebrahimi A, Zarei A, Zamani Fardadonbeh M, Lawson S (2017) Evaluation of genetic variability among “Early Mature” Juglans regia using microsatellite markers and morphological traits. PeerJ 5:e3834. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  11. Ferrer MM, Eguiarte LE, Montana C (2004) Genetic structure and outcrossing rates in Flourensia cernua (Asteraceae) growing at different densities in the Southwestern Chihuahuan Desert. Ann Bot 94:419–426CrossRefPubMedPubMedCentralGoogle Scholar
  12. Foroni I, Woeste K, Monti LM, Rao R (2007) Identification of ‘Sorrento’ walnut using simple sequence repeats (SSRs). Genet Resour Crop Evol 54:1081–1094CrossRefGoogle Scholar
  13. Hadziabdic D, Wadl PA, Vito LM, Boggess SL, Scheffler BE, Windham MT, Trigiano RN (2012) Development and characterization of sixteen microsatellite loci for Geosmithia morbida, the causal agent of thousand canker disease in black walnut (Juglans nigra). Conserv Genet Resour 4:287–289CrossRefGoogle Scholar
  14. Hamrick J, Godt M (1996) Effects of life history traits on genetic diversity in plant species. Philos Trans R Soc Lond B Biol Sci 351:1291–1298CrossRefGoogle Scholar
  15. Hasnaoui N, Buonamici A, Sebastiani F, Mars M, Trifi M, Vendramin GG (2010) Development and characterization of SSR markers for pomegranate (Punica granatum L.) using an enriched library. Conserv Genet Resour 2:283–285CrossRefGoogle Scholar
  16. Hasnaoui N, Buonamici A, Sebastiani F, Mars M, Zhang D, Vendramin GG (2012) Molecular genetic diversity of Punica granatum L. (pomegranate) as revealed by microsatellite DNA markers (SSR). Gene 493:105–112CrossRefPubMedGoogle Scholar
  17. Jalikopa SH, Kumar PS (1990) Use of a gene marker to study the mode of pollination in pomegranate (Púnica granatum L.). J Hortic Sci 65:221–223CrossRefGoogle Scholar
  18. Kimani PM, Wachira F, Cheruiyot EK, Owuoche J, Kimani E (2014) Genetic diversity of African sorghum (Sorghum bicolor L. Moench) accessions based on microsatellite markers. Aust J Crop Sci 8:171–177Google Scholar
  19. Liakat Ali M, McClung AM, Jia MH, Kimball JA, McCouch SR, Georgia CE (2011) A rice diversity panel evaluated for genetic and agro-morphological diversity between subpopulations and its geographic distribution. Crop Sci 51:2021–2035CrossRefGoogle Scholar
  20. Madhou M, Normand F, Bahorun T, Hormaza JI (2013) Fingerprinting and analysis of genetic diversity of litchi (Litchi chinensis Sonn.) accessions from different germplasm collections using microsatellite markers. Tree Genet Genomes 9:387–396CrossRefGoogle Scholar
  21. Mars M, Marrakchi M (1999) Diversity of pomegranate (Punica granatum L.) germplasm in Tunisia. Genet Res Crop Evol 46:461–467CrossRefGoogle Scholar
  22. Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655CrossRefPubMedGoogle Scholar
  23. Nachimuthu VV, Muthurajan R, Duraialaguraja S, Sivakami R, Pandian BA, Ponniah G, Gunasekaran K, Swaminathan MKKS, Sabariappan R (2015) Analysis of population structure and genetic diversity in rice germplasm using SSR markers: an initiative towards association mapping of agronomic traits in Oryza sativa. Rice 8:1CrossRefGoogle Scholar
  24. Narzary D, Rana TS, Ranade SA (2010) Genetic diversity in inter-simple sequence repeat profiles across natural populations of Indian pomegranate (Punica granatum L.). Plant Biol 12:806–813CrossRefPubMedGoogle Scholar
  25. Norouzi M, Talebi M, Sayed-Tabatabaei BE (2012) Chloroplast microsatellite diversity and population genetic structure of Iranian pomegranate (Punica granatum L.) genotypes. Sci Hortic 137:114–120CrossRefGoogle Scholar
  26. Parvaresh M, Talebi M, Sayed-Tabatabaei BE (2012) Molecular diversity and genetic relationship of pomegranate (Punica granatum L.) genotypes using microsatellite markers. Sci Hortic 138:244–252CrossRefGoogle Scholar
  27. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539CrossRefPubMedPubMedCentralGoogle Scholar
  28. Perdereau AC, Kelleher CT, Douglas GC, Hodkinson TR (2014) High levels of gene flow and genetic diversity in Irish populations of Salix caprea L. inferred from chloroplast and nuclear SSR markers. BMC Plant Biol 14:1CrossRefGoogle Scholar
  29. Pirseyedi SM, Valizadehghan S, Mardi M, Ghaffari MR, Mahmoodi P, Zahravi M, Zeinalabedini M, Khayam Nekoui SM (2010) Isolation and characterization of novel microsatellite markers in pomegranate (Punica granatum L.). Int J Mol Sci 11:2010–2016. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Pollegioni P, Woeste K, Olimpieri I, Marandola D, Cannata F, Malvolti ME (2011) Long term human impacts on genetic structure of Italian walnut inferred by SSR markers. Tree Genet Genomes 7:707–723CrossRefGoogle Scholar
  31. Pop IL, Vicol AC, Botu M, Raica PA, Vahdati K, Pamfil D (2013) Relationships of walnut cultivars in a germplasm collection: comparative analysis of phenotypic and molecular data. Sci Hortic 153:124–135CrossRefGoogle Scholar
  32. Pritchard JK, Stepheens M, Donnelly P (2000) Interference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  33. Raina D, Dhillon WS, Gill PPS (2013) Molecular marker-based characterization and genetic diversity of pomegranate genotypes. Indian J Hortic 70:469–474Google Scholar
  34. Rania J, Salwa Z, Najib H, Dhiaf Amal B, Messaoud M, Hannachi Amel S (2012) Microsatellite polymorphism in Tunisian pomegranates (Punica granatum L.): Cultivar genotyping and identification. Biochem Syst Ecol 44:27–35CrossRefGoogle Scholar
  35. Rohlf FJ (1998) NTSYS-pc. Numerical taxonomy and multivariate analysis system. Version 2.02. Exeter Software, Setauket, NYGoogle Scholar
  36. Sarkhosh A, Zamani Z, Fatahi R, Ebadi A (2006) RAPD markers reveal polymorphism among some Iranian pomegranate (Punica granatum L.) genotypes. Sci Hortic 111:24–29CrossRefGoogle Scholar
  37. Sarkhosh A, Zamani Z, Fatahi R, Hassani ME, Wiedow C, Buck E, Gardiner SE (2011) Genetic diversity of Iranian soft-seed pomegranate genotypes as revealed by fluorescent-AFLP markers. Physiol Mol Biol Plants 17:305–311CrossRefPubMedPubMedCentralGoogle Scholar
  38. Sinjare DY (2015) Application of microsatellite SSR markers in a number of pomegranate (Punica granatum L.) cultivars in Kurdistan region/Duhok Province. Int J Chem Biomol Sci 1:117–122.
  39. Slatkin M, Barton NH (1989) A comparison of three indirect methods for estimating average levels of gene flow. Evolution 43:1349–1368CrossRefPubMedGoogle Scholar
  40. Smulders MJM, Cottrell JE, Lefevre F, van der Schoot J, Arens P, Vosman B, Tabbener HE, Grassi F, Fossati T, Castiglione S, Krystufek V, Fluch S, Burg K, Vornam B, Pohl A, Gebhardt K, Alba N, Agúndez D, Maestro C, Notivol E, Volosyanchuk R, Pospíšková M, Bordács S, Bovenschen J, van Dam BC, Koelewijn HP, Halfmaerten D, Ivens B, van Slycken J, Vanden Broeck A, Storme V, Boerjan W (2008) Structure of the genetic diversity in black poplar (Populus nigra L.) populations across European river systems: consequences for conservation and restoration. For Ecol Manag 255:1388–1399. CrossRefGoogle Scholar
  41. Soriano JM, Romero C, Vilanova S, Llácer G, Badenes ML (2005) Genetic diversity of loquat germplasm (Eriobotrya japonica (Thunb) Lindl) assessed by SSR markers. Genome 48:108–114CrossRefPubMedGoogle Scholar
  42. Stover E, Mercure EW (2007) The pomegranate: a new look at the fruit of paradise. HortScience 42:1088–1092Google Scholar
  43. Talebi Baddaf M, Sharifi Neia B, Bahar M (2003) Analysis of genetic diversity in pomegranate cultivars of Iran, using Random Amplified Polymorphic DNA (RAPD) markers. In: Proceedings of the third national congress of biotechnology, Iran, 2:343–345 (in Farsi)Google Scholar
  44. Vahdati K, Mohseni Pourtaklu S, Karimi R, Barzehkar R, Amiri R, Mozaffari M, Woeste K (2015) Genetic diversity and gene flow of some Persian walnut populations in southeast of Iran revealed by SSR markers. Plant Syst Evol 301:691–699. CrossRefGoogle Scholar
  45. Vroh Bi I, Hraventg L, Chandelier A, Mergiai G, Du Jardin P (1996) Improved RAPD amplification of recalcitrant plant DNA by use of activated charcoal during DNA extraction. Plant Breed 115:205–206CrossRefGoogle Scholar
  46. Wang Z, Kang M, Liu H, Gao G, Zhang Z, Li Y, Wu R, Pang X (2014) High-level genetic diversity and complex population structure of Siberian apricot (Prunus sibirica L.) in China as revealed by nuclear SSR markers. PLoS ONE 9:e87381CrossRefPubMedPubMedCentralGoogle Scholar
  47. Yeh FC, Yang RC, Boyle TBJ, Ye ZH, Mao JX (1997) POPGENE, the user-friendly shareware for population genetic analysis, vol 10. Molecular Biology and Biotechnology Center, University of Alberta, Edmonton, Alberta, pp 295–301Google Scholar
  48. Yuan Z, Yin Y, Qu J, Zhu L, Li Y (2007) Population genetic diversity in Chinese pomegranate (Punica granatum L.) cultivars revealed by fluorescent-AFLP markers. J Genet Genomic 34:1061–1071CrossRefGoogle Scholar
  49. Zamani Z, Sarkhosh A, Fatahi R, Ebadi A (2007) Genetic relationships among pomegranate genotypes studied by fruit characteristics and RAPD markers. J Hortic Sci Biotechnol 82:11–18CrossRefGoogle Scholar
  50. Zamani Z, Zarei A, Fatahi R (2010) Characterization of progenies derived from pollination of pomegranate cv. Malase-Tourshe-Saveh using fruit traits and RAPD molecular marker. Sci Hortic 124:67–73. CrossRefGoogle Scholar
  51. Zarei A (2017) Biochemical and pomological characterization of pomegranate accessions in Fars province of Iran. SABRAO J Breed Genet 49:155–167Google Scholar
  52. Zarei A, Zamani Z, Fatahi R (2009) Evaluation of genetic relationships among some Persian cultivated and a wild pomegranate accessions using RAPDs and SSRs molecular markers. Hortic Environ Biotechnol 50:1–9Google Scholar
  53. Zong JW, Zhao TT, Ma QH, Liang LS, Wang GX (2015) Assessment of genetic diversity and population genetic structure of Corylus mandshurica in China using SSR markers. PLOS ONE 10 10:e0137528. CrossRefGoogle Scholar

Copyright information

© Korean Society for Horticultural Science and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biotechnology, College of AgricultureJahrom UniversityJahromIran
  2. 2.Department of Horticulture, Faculty of AgricultureUniversity of GuilanRashtIran

Personalised recommendations