Skip to main content
Log in

Protective enzymes and genes related to the JA pathway are involved in the response to root-knot nematodes at high soil temperatures in tomatoes carrying Mi-1

  • Research Report
  • Tissue Culture/Biotechnology
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Root-knot nematodes (RKNs; Meloidogyne spp.) are obligate endoparasites that infect a large number of crop plants and cause severe yield losses. Tomato cultivars carrying the Mi-1 gene conferring root-knot nematode resistance have been widely used, but this gene loses its effectiveness at soil temperatures above 28°C. In this study, the mechanism of the loss of resistance to RKNs at high soil temperatures was examined using LA0655 (Solanum lycopersicum cv. Anahu), which contains the Mi-1 gene. It was found that high soil temperatures delayed the expression of the Mi-1 gene and reduced the activities of superoxide dismutase, peroxidase, chitinase, and β-1,3-glucanase. Although genes in the jasmonic acid (JA) pathway exhibited an obvious response at high soil temperatures, this response could not prevent the invasion of RKNs; indeed, at 30 days after inoculation with RKNs, the plants produced large numbers of root knots and egg masses at a soil temperature of 32°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Bhattarai, K.K., Q.G. Xie, S. Mantelin, U. Bishnoi, T. Girke, D.A. Navarre, and I. Kaloshian. 2008. Tomato susceptibility to root-knot nematodes requires an intact jasmonic acid signaling pathway. Mol. Plant-Microbe Interact. 21:1205–1214

    Article  CAS  PubMed  Google Scholar 

  • Boller, T., A. Gehre, F. Manch, and U. Vogrli. 1983. Chitinase in bean leaves: induction by ethylene, purification, properties, and possible function. Planta 157:22–31

    Article  CAS  PubMed  Google Scholar 

  • Byrd, D.W., Jr., T. Kirkpatrick, and K. R. Barker. 1983. An improved technique for clearing and staining plant tissue for detection of nematodes. J. Nematol. 14:142–143

    Google Scholar 

  • Cooper, W.R., L. Jia, and L. Goggin. 2005. Effects of jasmonate-induced defenses on root-knot nematode infection of resistant and susceptible tomato cultivars. J Chem. Ecol. 31:1953–1967

    Article  CAS  PubMed  Google Scholar 

  • Cortada, L., F. J. Sorribas, O. César, M.F. Andrés, S. Verdejo-Lucas. 2009. Response of tomato rootstocks carrying the Mi-resistance gene to populations of Meloidogynearenaria, M. incognita and M. javanica. Eur. J. Plant Pathol. 124:337–343

    Article  Google Scholar 

  • Devran, Z., M.A. Sögüt, and N. Mutlu. 2010. Response of tomato rootstocks with the Mi resistance gene to Meloidogyne incognita race 2 at different soil temperatures. Phytopathol. Mediterr. 49:11–17

    Google Scholar 

  • Dropkin, V.H. 1969. The necrotic reaction of tomatoes and other hosts resistant to Meloidogyne:reversal by temperature. Phytopathology 59:1632–1637

    Google Scholar 

  • Fan, J.W., C.L. Hu, L.N. Zhang, Z.L. Li, F.K. Zhao, S.H. Wang. 2015. Jasmonic acid mediates tomato’s response to root knot nematodes. J. Plant Growth Regul. 34:196–205

    Article  CAS  Google Scholar 

  • Fujimoto, T., Y. Tomitakab, H. Abec, S. Tsuda, K. Futai, and T. Mizukubo. 2011. Expression profile of jasmonic acid-induced genes and the induced resistance against the root-knot nematode (Meloidogyne incognita) in tomato plants (Solanum lycopersicum) after foliar treatment with methyl jasmonate. J. Plant Physiol. 168:1084–1097

    Article  CAS  PubMed  Google Scholar 

  • Guo, Y.Y., X.F. Wang, K. Xu, and G.M. Zhang. 2005. Effect of Meloidogyne incognita on the physiological and chemical changes in ginger. Acta Phytopathol. Sin. 35:49–54.

    Google Scholar 

  • Holtzman, O. 1965. Effects of soil temperature on resistance of tomato to root-knot nematode (Meloidogyne incognita). Phytopathology 55:990–992

    Google Scholar 

  • Jia, S.S. 2012. Study on evaluation and mechanism of tomato rootstocks for resistance to Meloidogyne incognita. phD Diss., Shan Dong Agri. Univ., China

    Google Scholar 

  • Koenning, S.R., C. Overstreet, J.W. Noling, P.A. Donald, J.O. Becker, and B.A. Fortnum. 1999. Survey of crop losses in response to phytoparasitic nematodes in the United States for 1994. J. Nematol. 13:587–618

    Google Scholar 

  • Lei, H., X. Qi, W. Chang, R. Yang, S.H. Wang. 2013. Jasmonic acid-mediated phloem transcriptome of tomato in response to root-knot nematode. J. Beijing Univ. Agric. 28:1–5

    Google Scholar 

  • Li, C.B. 2006. Tomato as a model system to study the molecular basis of plant defense responses to insect attact. Master thesis: Shan Dong Agri. Univ

    Google Scholar 

  • Liharska, T. B. and V.M. Williamson. 1997. Resistance to root-knot nematodes in tomato, p. 191–200. In: C. Fenoll, F.M.W. Grundler, S.A. Ohl (eds). Cellular and Molecular aspects of Plant-Nematode Interactions. Kluwer Acad. Publ. Netherland

    Chapter  Google Scholar 

  • Liu, W.Z. 2000. Plant Pathogeny Nematode. Beijing: China Agric. Press

    Google Scholar 

  • Mur, L.A.J., P. Kenton, R. Atzorn, O. Miersch, and C. Wasternack. 2006. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol. 140:249–262

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roberts, P.A. 1986. Variability in reproduction of isolates of Meloidogyne incognita and M. javanica on resistant tomato genotypes. Plant Dis. 70:547–551

    Article  Google Scholar 

  • Sun, J.Q., H.L. Jiang, and C.Y. Li. 2011. Systemin/Jasmonate-mediated systemic defense signaling in tomato. Mol. Plant 4:607–615

    Article  CAS  PubMed  Google Scholar 

  • Tan, J.J. and J.R. Ye. 2003. Research advance in pathogenic mechanism of pine wood nematode disease. J. Huazhong Agric. Univ. 22:613–617

    CAS  Google Scholar 

  • Wang, M.X., C.S. Yan, H.K. Jiang, Y.X. Dong, L. Fang, and Q.A. Qi. 2009. Evaluation of molecule markers linked to root-knot nematode resistance gene (Mi) on tomato. China Veg. 18:21–24

    CAS  Google Scholar 

  • Wang, T.P., J.J. Ma, and F.Y. Zhao. 2010. Research advance of ß -1,3-glucanase and chitinase in controlling insect pests of crops. J. Anhui Agric. Sci. 38:14417–14419

    CAS  Google Scholar 

  • Williamson, V.M. 1988. Root-knot nematode resistance genes in tomato and their potential for future use. Annu. Rev. Phytopathol. 36:277–293

    Article  Google Scholar 

  • Williamson, V.M., J.Y. Ho, F.F. Wu, N. Miller, and I. Kaloshian. 1994. A PCR-based marker tightly linked to the nematode resistance gene, Mi, in tomato. Theor. Appl. Genet. 87:757–763

    Article  CAS  PubMed  Google Scholar 

  • Wu, H.Y. and Y.X. Duan. 2004. Interaction of chitinase isozyme and soybean resistant to Heterodera glycines. Acta Phytopathol. Sin. 34:555–557

    Google Scholar 

  • Ye, D.Y., C.T. Qian, Y.Y. Jia, Y.X. Zhang, and J.F. Chen. 2009. Cucumber and its related species for resistance to the Sourthern root-knot nematode Meloidogyne incognita and respond to changes ofenzyme. Acta Hortic. Sin. 36:1755–1760

    CAS  Google Scholar 

  • Yu, Y.T, Y.Y. Xie, L.L. Huang, Z.S. Kang. 2007. Effects of different combinations of carbon and nitrogen sources in MS medium on activities of extracellular ß-1,3-glucanase produced by take-all pathogen. J. Northwest A & F Univ. (Nat. Sci. Ed.) 35:110–114

    Google Scholar 

  • Zacheo, G. and T. Bleve-Zacheo. 1988. Involvement of superoxide dismutase and superoxide radicals in the susceptibility and resistance of tomato plants to Meloidogyne incognita attack. Physiol. Mol. Plant Pathol. 32:313–322

    Article  CAS  Google Scholar 

  • Zhang, L.N., J.H. Cheng, R. Yang, Z.H. Sun, C.X. Wu, and S.H. Wang. 2011. Effects of JA synthesis-related genes Spr2 and LePrs on the resistance to root-knot nematodes in tomato. Sci. Agric. Sin. 44:4022–4028

    CAS  Google Scholar 

  • Zhang, S.Y., J.B. Wang, H.F. Wang, J.W. Shao, G.L. Li, and X.D. Li. 2005. The relationship between activities of chitinase and ß-1,3-glucanase and resistance to rhizomania in sugar beet. J. plant physiol. mol. biol. 31:281–286

    Google Scholar 

  • Zhang, X.W. 2010. Effect of penicillin on ß-1, 3-glucanase activity and chitinase activity of apple tree. Inn. Mong. Agric. Sci. Technol. 5:76–77

    Google Scholar 

  • Zhao, S.J., G.A. Shi, and X.C. Dong. 2000. Plant physiology experiment guidance. Beijing: China agricultural science and technology publishing house

    Google Scholar 

  • Zuo, Y.H., Z.S. Kang, C.P. Yang, H.Y. Rui, S.B. Lou, and X.R. Liu. 2009. Relationship between activities of β-1,3-glucanase and chitinase and resistance to phytophthora root rot in the soybean. Acta Phytopathol. Sin. 39:600–607.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaohui Wang.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, C., Zhao, W., Fan, J. et al. Protective enzymes and genes related to the JA pathway are involved in the response to root-knot nematodes at high soil temperatures in tomatoes carrying Mi-1 . Hortic. Environ. Biotechnol. 56, 546–554 (2015). https://doi.org/10.1007/s13580-015-0146-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-015-0146-6

Additional key words

Navigation