KIF15 contributes to cell proliferation and migration in breast cancer

Abstract

A number of kinesin proteins (KIFs) have been implicated in the development of multiple cancers. However, little is known about the expression and function of KIF15 in human breast cancer. Herein, we detected KIF15 expression in breast cancer tissues and paired adjacent normal tissues using immunohistochemistry and quantitative real-time polymerase chain reaction analysis, and the correlation of KIF15 expression with clinicopathological parameters was evaluated statistically. The role of KIF15 in cell proliferation, migration, tumor growth and metastasis of breast cancer cells was investigated in vitro and in vivo, and we explored potential molecular mechanisms underlying the effects of KIF15 in breast cancer through western blot analysis. The results revealed that increased KIF15 expression in breast cancer tissues were positively related with tumor size, lymph node metastasis and TNM stage, and higher KIF15 expression predicts a worse prognosis of patients with breast cancer. Furthermore, KIF15 knockdown markedly attenuated breast cancer cell proliferation, migration, tumor growth and metastasis in vitro and in vivo, and silenced KIF15 expression significantly inhibited the expression of phosphorylated AKT, phosphorylated JNK, and cyclin D1, while both p53 and p21 protein expressions were strongly enhanced. These results suggest that KIF15 is a potential oncogene in human breast cancer.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

The data generated and analyzed in this study are available from the corresponding author on reasonable request.

References

  1. 1.

    Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492.

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30. https://doi.org/10.3322/caac.21387.

    Article  Google Scholar 

  3. 3.

    Song D, Cui M, Zhao G, Fan Z, Nolan K, Yang Y, et al. Pathway-based analysis of breast cancer. Am J Transl Res. 2014;6(3):302–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Arango BA, Rivera CL, Gluck S. Gene expression profiling in breast cancer. Am J Transl Res. 2013;5(2):132–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Goulet A, Major J, Jun Y, Gross SP, Rosenfeld SS, Moores CA. Comprehensive structural model of the mechanochemical cycle of a mitotic motor highlights molecular adaptations in the kinesin family. Proc Natl Acad Sci USA. 2014;111(5):1837–42. https://doi.org/10.1073/pnas.1319848111.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Hirokawa N, Pfister KK, Yorifuji H, Wagner MC, Brady ST, Bloom GS. Submolecular domains of bovine brain kinesin identified by electron microscopy and monoclonal antibody decoration. Cell. 1989;56(5):867–78.

    CAS  Article  Google Scholar 

  7. 7.

    Vale RD, Reese TS, Sheetz MP. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell. 1985;42(1):39–50.

    CAS  Article  Google Scholar 

  8. 8.

    Miki H, Okada Y, Hirokawa N. Analysis of the kinesin superfamily: insights into structure and function. Trends Cell Biol. 2005;15(9):467–76. https://doi.org/10.1016/j.tcb.2005.07.006.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Miki H, Setou M, Kaneshiro K, Hirokawa N. All kinesin superfamily protein, KIF, genes in mouse and human. Proc Natl Acad Sci USA. 2001;98(13):7004–111. https://doi.org/10.1073/pnas.111145398.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Hirokawa N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science. 1998;279(5350):519–26.

    CAS  Article  Google Scholar 

  11. 11.

    Hirokawa N, Noda Y, Tanaka Y, Niwa S. Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol. 2009;10(10):682–96. https://doi.org/10.1038/nrm2774.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Wordeman L. How kinesin motor proteins drive mitotic spindle function: lessons from molecular assays. Semin Cell Dev Biol. 2010;21(3):260–8. https://doi.org/10.1016/j.semcdb.2010.01.018.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Liu X, Gong H, Huang K. Oncogenic role of kinesin proteins and targeting kinesin therapy. Cancer Sci. 2013;104(6):651–6. https://doi.org/10.1111/cas.12138.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Taniwaki M, Takano A, Ishikawa N, Yasui W, Inai K, Nishimura H, et al. Activation of KIF4A as a prognostic biomarker and therapeutic target for lung cancer. Clin Cancer Res. 2007;13(22 Pt 1):6624–31. https://doi.org/10.1158/1078-0432.CCR-07-1328.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Narayan G, Bourdon V, Chaganti S, Arias-Pulido H, Nandula SV, Rao PH, et al. Gene dosage alterations revealed by cDNA microarray analysis in cervical cancer: identification of candidate amplified and overexpressed genes. Genes Chromosom Cancer. 2007;46(4):373–84. https://doi.org/10.1002/gcc.20418.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Blagosklonny MV. Mitotic arrest and cell fate: why and how mitotic inhibition of transcription drives mutually exclusive events. Cell Cycle. 2007;6(1):70–4. https://doi.org/10.4161/cc.6.1.3682.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Liu X, Li Y, Zhang X, Liu XY, Peng A, Chen Y, et al. Inhibition of kinesin family member 20B sensitizes hepatocellular carcinoma cell to microtubule-targeting agents by blocking cytokinesis. Cancer Sci. 2018;109(11):3450–60. https://doi.org/10.1111/cas.13794.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Asbaghi Y, Thompson LL, Lichtensztejn Z, McManus KJ. KIF11 silencing and inhibition induces chromosome instability that may contribute to cancer. Genes Chromosomes Cancer. 2017;56(9):668–80. https://doi.org/10.1002/gcc.22471.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Drechsler H, McHugh T, Singleton MR, Carter NJ, McAinsh AD. The Kinesin-12 Kif15 is a processive track-switching tetramer. eLife. 2014;3:e01724. https://doi.org/10.7554/eLife.01724.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Tanenbaum ME, Macurek L, Janssen A, Geers EF, Alvarez-Fernandez M, Medema RH. Kif15 cooperates with eg5 to promote bipolar spindle assembly. Curr Biol. 2009;19(20):1703–11. https://doi.org/10.1016/j.cub.2009.08.027.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Wang J, Guo X, Xie C, Jiang J. KIF15 promotes pancreatic cancer proliferation via the MEK-ERK signalling pathway. Br J Cancer. 2017;117(2):245–55. https://doi.org/10.1038/bjc.2017.165.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Qiao Y, Chen J, Ma C, Liu Y, Li P, Wang Y, et al. Increased KIF15 Expression predicts a poor prognosis in patients with lung adenocarcinoma. Cell Physiol Biochem. 2018;51(1):1–10. https://doi.org/10.1159/000495155.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Zou JX, Duan Z, Wang J, Sokolov A, Xu J, Chen CZ, et al. Kinesin family deregulation coordinated by bromodomain protein ANCCA and histone methyltransferase MLL for breast cancer cell growth, survival, and tamoxifen resistance. Mol Cancer Res. 2014;12(4):539–49. https://doi.org/10.1158/1541-7786.MCR-13-0459.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Mayer IA, Arteaga CL. The PI3K/AKT pathway as a target for cancer treatment. Annu Rev Med. 2016;67:11–28. https://doi.org/10.1146/annurev-med-062913-051343.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Bubici C, Papa S. JNK signalling in cancer: in need of new, smarter therapeutic targets. Br J Pharmacol. 2014;171(1):24–37. https://doi.org/10.1111/bph.12432.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Qie S, Diehl JA. Cyclin D1, cancer progression, and opportunities in cancer treatment. J Mol Med. 2016;94(12):1313–26. https://doi.org/10.1007/s00109-016-1475-3.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    El-Deiry WS. p21(WAF1) Mediates cell-cycle inhibition, relevant to cancer suppression and therapy. Can Res. 2016;76(18):5189–91. https://doi.org/10.1158/0008-5472.CAN-16-2055.

    CAS  Article  Google Scholar 

  28. 28.

    Yang L, Zhao W, Wei P, Zuo W, Zhu S. Tumor suppressor p53 induces miR-15a processing to inhibit neuronal apoptosis inhibitory protein (NAIP) in the apoptotic response DNA damage in breast cancer cell. Am J Transl Res. 2017;9(2):683–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Song X, Zhang T, Wang X, Liao X, Han C, Yang C, et al. Distinct diagnostic and prognostic values of kinesin family member genes expression in patients with breast cancer. Med Sci Monit. 2018;24:9442–644. https://doi.org/10.12659/MSM.913401.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Lee CW, Belanger K, Rao SC, Petrella TM, Tozer RG, Wood L, et al. A phase II study of ispinesib (SB-715992) in patients with metastatic or recurrent malignant melanoma: a National Cancer Institute of Canada Clinical Trials Group trial. Invest New Drugs. 2008;26(3):249–55. https://doi.org/10.1007/s10637-007-9097-9.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Rath O, Kozielski F. Kinesins and cancer. Nat Rev Cancer. 2012;12(8):527–39. https://doi.org/10.1038/nrc3310.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Suzhou Health Planning Commission’s Key Clinical Diagnosis and Treatment Program (LCZX201606), National Natural Science Foundation of China (81873730) and the Jiangsu Women and Children Health Key Discipline Program (FXK201758).

Funding

This work was supported by grants from the Suzhou Health Planning Commission’s Key Clinical Diagnosis and Treatment Program (LCZX201606), National Natural Science Foundation of China (81873730) and the Jiangsu Women and Children Health Key Discipline Program (FXK201758).

Author information

Affiliations

Authors

Contributions

JG: project supervision, revision, and approval; GX and ZL: data collection, management and analysis; LX and WY: data analysis and critical revision; LR: statistical analysis; GX and JG: paper writing and editing.

Corresponding author

Correspondence to Guoqin Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This study was approved by the Human Research Ethics Committees at the Second Affiliated Hospital of Soochow University, China. The approval number is JD-LK-2018-009-02. All the participants signed written informed consent forms. All animal experiments were performed according to the protocols approved by the Medical Experimental Animal Care Commission of Soochow University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Zhu, L., Lu, X. et al. KIF15 contributes to cell proliferation and migration in breast cancer. Human Cell (2020). https://doi.org/10.1007/s13577-020-00392-0

Download citation

Keywords

  • Breast cancer
  • KIF15
  • Cell proliferation
  • Migration
  • Metastasis