Skip to main content

Advertisement

Log in

ClC-5 alleviates renal fibrosis in unilateral ureteral obstruction mice

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Renal fibrosis is the major feature of end-stage renal disease with high mortality. Chloride (Cl) moving along Cl channels has been suggested to play to an important role in renal function. This study aims to investigate the role of ClC-5 in renal fibrosis in unilateral ureteral occlusion (UUO) mice. C57BL/6 mice received UUO surgery followed by delivery of adeno-associated virus encoding ClC-5 cDNA (AAVClC-5). Western blotting, real-time PCR and histological analysis were used to investigate the effects of ClC-5 on renal fibrosis and underlying mechanisms. The expression of ClC-5 was significantly decreased in renal cortex of UUO mice and transforming growth factor-β1 (TGF-β1)-stimulated HK2 cells. Overexpression of ClC-5 in vivo markedly ameliorated UUO-induced renal injury and fibrosis. The increased expressions of plasminogen activator inhibitor type 1, connective tissue growth factor, collagen III and collagen IV were also inhibited by ClC-5 upregulation. Moreover, UUO-induced immune cell infiltration and inflammatory cytokines release were attenuated in mice infected with AAVClC-5. In addition, the in vivo and in vitro results showed that ClC-5 overexpression prevented epithelial-to-mesenchymal transition (EMT), concomitantly with a restoration of E-cadherin expression and a decrease of vimentin, α-SMA and S100A4 expressions. Furthermore, ClC-5 overexpression inhibited UUO- or TGF-β1-induced increase in nuclear factor kappa B (NF-κB) acetylation and matrix metalloproteinases-9 (MMP-9) expression. However, downregulation of ClC-5 in HK2 cells further potentiated TGF-β1-induced EMT and increase in NF-κB acetylation and MMP-9 expression. ClC-5 upregulation ameliorates renal fibrosis via inhibiting NF-κB/MMP-9 pathway signaling activation, suggesting that ClC-5 may be a novel therapeutic target for treating renal fibrosis and chronic kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

UUO:

Unilateral ureteral occlusion

AAV:

Adeno-associated virus

TGF-β1:

Transforming growth factor-β1

NF-κB:

Nuclear factor kappa B

MMP:

Matrix metalloproteinases-9

ECM:

Extracellular matrix

EMT:

Epithelial-to-mesenchymal transition

PAI-1:

Plasminogen activator inhibitor type 1

CTGF:

Connective tissue growth factor

IL-1β:

Interleukin-1β

IL-6:

Interleukin-6

MCP-1:

Monocyte chemoattractant protein-1

ICAM-1:

Intercellular adhesion molecule-1

TNF-α:

Tumor necrosis factor-α

References

  1. Becker GJ, Hewitson TD. The role of tubulointerstitial injury in chronic renal failure. Curr Opin Nephrol Hypertens. 2000;9(2):133–8.

    Article  CAS  PubMed  Google Scholar 

  2. Waasdorp M, de Rooij DM, Florquin S, Duitman J, Spek CA. Protease-activated receptor-1 contributes to renal injury and interstitial fibrosis during chronic obstructive nephropathy. J Cell Mol Med. 2018. https://doi.org/10.1111/jcmm.14028.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Qi R, Yang C. Renal tubular epithelial cells: the neglected mediator of tubulointerstitial fibrosis after injury. Cell Death Dis. 2018;9(11):1126. https://doi.org/10.1038/s41419-018-1157-x.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Buchtler S, Grill A, Hofmarksrichter S, Stockert P, Schiechl-Brachner G, Rodriguez Gomez M, Neumayer S, Schmidbauer K, Talke Y, Klinkhammer BM, Boor P, Medvinsky A, Renner K, Castrop H, Mack M. Cellular origin and functional relevance of Collagen I production in the kidney. JASN. 2018;29(7):1859–73. https://doi.org/10.1681/ASN.2018020138.

    Article  CAS  PubMed  Google Scholar 

  5. Li Z, Hong Z, Peng Z, Zhao Y, Shao R. Acetylshikonin from Zicao ameliorates renal dysfunction and fibrosis in diabetic mice by inhibiting TGF-beta1/Smad pathway. Hum Cell. 2018;31(3):199–209. https://doi.org/10.1007/s13577-017-0192-8.

    Article  CAS  PubMed  Google Scholar 

  6. Yin J, Wang Y, Chang J, Li B, Zhang J, Liu Y, Lai S, Jiang Y, Li H, Zeng X. Apelin inhibited epithelial-mesenchymal transition of podocytes in diabetic mice through downregulating immunoproteasome subunits beta5i. Cell Death Dis. 2018;9(10):1031. https://doi.org/10.1038/s41419-018-1098-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Meng XM, Tang PM, Li J, Lan HY. TGF-beta/Smad signaling in renal fibrosis. Front Physiol. 2015;6:82. https://doi.org/10.3389/fphys.2015.00082.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gao R, Chen J, Hu Y, Li Z, Wang S, Shetty S, Fu J. Sirt1 deletion leads to enhanced inflammation and aggravates endotoxin-induced acute kidney injury. PLoS One. 2014;9(6):e98909. https://doi.org/10.1371/journal.pone.0098909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang H, Liao D, Tong L, Zhong L, Wu K. MiR-373 exacerbates renal injury and fibrosis via NF-kappaB/MatrixMetalloproteinase-9 signaling by targeting Sirtuin1. Genomics. 2018. https://doi.org/10.1016/j.ygeno.2018.04.017.

    Article  PubMed  Google Scholar 

  10. Huang XZ, Wen D, Zhang M, Xie Q, Ma L, Guan Y, Ren Y, Chen J, Hao CM. Sirt1 activation ameliorates renal fibrosis by inhibiting the TGF-beta/Smad3 pathway. J Cell Biochem. 2014;115(5):996–1005. https://doi.org/10.1002/jcb.24748.

    Article  CAS  PubMed  Google Scholar 

  11. Rajagopal M, Wallace DP. Chloride secretion by renal collecting ducts. Curr Opin Nephrol Hypertens. 2015;24(5):444–9. https://doi.org/10.1097/MNH.0000000000000148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Souza-Menezes J, Morales MM, Tukaye DN, Guggino SE, Guggino WB. Absence of ClC5 in knockout mice leads to glycosuria, impaired renal glucose handling and low proximal tubule GLUT2 protein expression. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol. 2007;20(5):455–64. https://doi.org/10.1159/000107529.

    Article  CAS  Google Scholar 

  13. Lin Z, Jin S, Duan X, Wang T, Martini S, Hulamm P, Cha B, Hubbard A, Donowitz M, Guggino SE. Chloride channel (Clc)-5 is necessary for exocytic trafficking of Na+/H+ exchanger 3 (NHE3). J Biol Chem. 2011;286(26):22833–45. https://doi.org/10.1074/jbc.M111.224998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Carraro-Lacroix LR, Lessa LM, Bezerra CN, Pessoa TD, Souza-Menezes J, Morales MM, Girardi AC, Malnic G. Role of CFTR and ClC-5 in modulating vacuolar H+-ATPase activity in kidney proximal tubule. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol. 2010;26(4–5):563–76. https://doi.org/10.1159/000322324.

    Article  CAS  Google Scholar 

  15. Tan XH, Zheng XM, Yu LX, He J, Zhu HM, Ge XP, Ren XL, Ye FQ, Bellusci S, Xiao J, Li XK, Zhang JS. Fibroblast growth factor 2 protects against renal ischaemia/reperfusion injury by attenuating mitochondrial damage and proinflammatory signalling. J Cell Mol Med. 2017;21(11):2909–25. https://doi.org/10.1111/jcmm.13203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Meng XM, Wang S, Huang XR, Yang C, Xiao J, Zhang Y, To KF, Nikolic-Paterson DJ, Lan HY. Inflammatory macrophages can transdifferentiate into myofibroblasts during renal fibrosis. Cell Death Dis. 2016;7(12):e2495. https://doi.org/10.1038/cddis.2016.402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Laverty G, Anttila A, Carty J, Reddy V, Yum J, Arnason SS. CFTR mediated chloride secretion in the avian renal proximal tubule. Comp Biochem Physiol A Mol Integr Physiol. 2012;161(1):53–60. https://doi.org/10.1016/j.cbpa.2011.09.005.

    Article  CAS  PubMed  Google Scholar 

  18. Jouret F, Bernard A, Hermans C, Dom G, Terryn S, Leal T, Lebecque P, Cassiman JJ, Scholte BJ, de Jonge HR, Courtoy PJ, Devuyst O. Cystic fibrosis is associated with a defect in apical receptor-mediated endocytosis in mouse and human kidney. JASN. 2007;18(3):707–18. https://doi.org/10.1681/ASN.2006030269.

    Article  CAS  PubMed  Google Scholar 

  19. Mansour-Hendili L, Blanchard A, Le Pottier N, Roncelin I, Lourdel S, Treard C, Gonzalez W, Vergara-Jaque A, Morin G, Colin E, Holder-Espinasse M, Bacchetta J, Baudouin V, Benoit S, Berard E, Bourdat-Michel G, Bouchireb K, Burtey S, Cailliez M, Cardon G, Cartery C, Champion G, Chauveau D, Cochat P, Dahan K, De la Faille R, Debray FG, Dehoux L, Deschenes G, Desport E, Devuyst O, Dieguez S, Emma F, Fischbach M, Fouque D, Fourcade J, Francois H, Gilbert-Dussardier B, Hannedouche T, Houillier P, Izzedine H, Janner M, Karras A, Knebelmann B, Lavocat MP, Lemoine S, Leroy V, Loirat C, Macher MA, Martin-Coignard D, Morin D, Niaudet P, Nivet H, Nobili F, Novo R, Faivre L, Rigothier C, Roussey-Kesler G, Salomon R, Schleich A, Sellier-Leclerc AL, Soulami K, Tiple A, Ulinski T, Vanhille P, Van Regemorter N, Jeunemaitre X, Vargas-Poussou R. Mutation update of the CLCN5 Gene responsible for dent disease 1. Hum Mut. 2015;36(8):743–52. https://doi.org/10.1002/humu.22804.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang H, Pang Y, Ma C, Li J, Wang H, Shao Z. ClC5 decreases the sensitivity of multiple myeloma cells to bortezomib via promoting prosurvival autophagy. Oncol Res. 2018;26(3):421–9. https://doi.org/10.3727/096504017X15049221237147.

    Article  PubMed  Google Scholar 

  21. Figueira MF, Castiglione RC, de Lemos Barbosa CM, Ornellas FM, da Silva Feltran G, Morales MM, da Fonseca RN, de Souza-Menezes J. Diabetic rats present higher urinary loss of proteins and lower renal expression of megalin, cubilin, ClC-5, and CFTR. Physiol Rep. 2017. https://doi.org/10.14814/phy2.13335.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ruiz-Lafuente N, Alcaraz-Garcia MJ, Sebastian-Ruiz S, Garcia-Serna AM, Gomez-Espuch J, Moraleda JM, Minguela A, Garcia-Alonso AM, Parrado A. IL-4 up-regulates MiR-21 and the MiRNAs hosted in the CLCN5 gene in chronic lymphocytic leukemia. PLoS One. 2015;10(4):e0124936. https://doi.org/10.1371/journal.pone.0124936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vaughan DE, Rai R, Khan SS, Eren M, Ghosh AK. Plasminogen activator inhibitor-1 is a marker and a mediator of senescence. Arterioscler Thromb Vasc Biol. 2017;37(8):1446–52. https://doi.org/10.1161/ATVBAHA.117.309451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Weston BS, Wahab NA, Mason RM. CTGF mediates TGF-beta-induced fibronectin matrix deposition by upregulating active alpha5beta1 integrin in human mesangial cells. JASN. 2003;14(3):601–10.

    Article  CAS  PubMed  Google Scholar 

  25. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Investig. 2009;119(6):1420–8. https://doi.org/10.1172/JCI39104.

    Article  CAS  PubMed  Google Scholar 

  26. Lovisa S, Zeisberg M, Kalluri R. Partial epithelial-to-mesenchymal transition and other new mechanisms of kidney fibrosis. TEM. 2016;27(10):681–95. https://doi.org/10.1016/j.tem.2016.06.004.

    Article  CAS  PubMed  Google Scholar 

  27. Lovisa S, LeBleu VS, Tampe B, Sugimoto H, Vadnagara K, Carstens JL, Wu CC, Hagos Y, Burckhardt BC, Pentcheva-Hoang T, Nischal H, Allison JP, Zeisberg M, Kalluri R. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med. 2015;21(9):998–1009. https://doi.org/10.1038/nm.3902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu Y. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. JASN. 2004;15(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  29. Oba S, Kumano S, Suzuki E, Nishimatsu H, Takahashi M, Takamori H, Kasuya M, Ogawa Y, Sato K, Kimura K, Homma Y, Hirata Y, Fujita T. miR-200b precursor can ameliorate renal tubulointerstitial fibrosis. PLoS One. 2010;5(10):e13614. https://doi.org/10.1371/journal.pone.0013614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Salminen A, Kaarniranta K. NF-kappaB signaling in the aging process. J Clin Immunol. 2009;29(4):397–405. https://doi.org/10.1007/s10875-009-9296-6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Xia Yang.

Ethics declarations

Ethics approval

All animal experiments were carried out according to the institutional guidelines from the Principles of Laboratory Animal Care of Gansu Provincial Hospital of Traditional Chinese Medicine.

Conflict of interest

The authors declared that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1601 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, SX., Zhang, ZC. & Bai, HL. ClC-5 alleviates renal fibrosis in unilateral ureteral obstruction mice. Human Cell 32, 297–305 (2019). https://doi.org/10.1007/s13577-019-00253-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-019-00253-5

Keywords

Navigation