Human Cell

, Volume 32, Issue 3, pp 326–333 | Cite as

MicroRNA-30e inhibits proliferation and invasion of non-small cell lung cancer via targeting SOX9

  • Yanwei Cui
  • Lei Zhao
  • Shilei Zhao
  • Tao Guo
  • Fengzhou Li
  • Zhuoshi Li
  • Lei Fang
  • Taihua WuEmail author
  • Chundong GuEmail author
Research Article


Previous studies have reported that microRNA-30e (miR-30e) is dysregulated in multiple human cancers. However, the expression, functions and molecular mechanism of miR-30e in NSCLC remain unknown. In this study, we found that miR-30e was expressed at a low level in NSCLC tissues and cell lines. In NSCLC cell lines, enforced expression of miR-30e could inhibit cell proliferation and invasion in vitro. In addition, miR-30e negatively regulated SOX9 expression through directly binding to the 3′UTR of SOX9, and an inverse correlation was found between miR-30e and SOX9 mRNA expression in NSCLC tissues. Moreover, knockdown of SOX9 led to decreased proliferation and invasion of NSCLC cells. Taken together, miR-30e acts as a tumor suppressor in NSCLC, and inhibits cell proliferation and invasion possibly by directly targeting SOX9. These findings might provide novel therapeutic targets for NSCLC.


MicroRNA-30e Proliferation Invasion SOX9 Non-small cell lung cancer 



This work was supported by a grant from the National Nature Science Foundation of China (181774078, 81773453, 81803886), National Nature Science Foundation of Liaoning Province, China (201602227, 20170540300).

Compliance with ethical standards

Conflict of interest

All the authors declared no conflicts of interest in this work.


  1. 1.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.CrossRefGoogle Scholar
  2. 2.
    Fiteni F, Anota A, Westeel V, Bonnetain F. Methodology of health-related quality of life analysis in phaseIII advanced non-small-cell lung cancer clinical trials: a critical review. BMC Cancer. 2016;16:122.CrossRefGoogle Scholar
  3. 3.
    Li Z, Song Y, Liu L, et al. miR-199a impairs autophagy and induces cardiac hypertrophy through mTOR activation. Cell Death Differ. 2017;24(7):1205–13.CrossRefGoogle Scholar
  4. 4.
    Mao M, Wu Z, Chen J. MicroRNA-187-5p suppresses cancer cell progression in non small cell lung cancer(NSCLC) through down-regulation of CYP1B1. Biochem Biophys Res Commun. 2016;478:649–55.CrossRefGoogle Scholar
  5. 5.
    Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005;6:376–85.CrossRefGoogle Scholar
  6. 6.
    Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.CrossRefGoogle Scholar
  7. 7.
    Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33.CrossRefGoogle Scholar
  8. 8.
    Aigner A. MicroRNAs (miRNAs) in cancer invasion and metastasis: therapeutic approaches based on metastasis-related miRNAs. J Mol Med (Berl). 2011;89:445–57.CrossRefGoogle Scholar
  9. 9.
    Rottiers V, Naar AM. MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol. 2012;13:239–50.CrossRefGoogle Scholar
  10. 10.
    Cho WC. MicroRNAs: potential biomarkers for cancer diagnosis, prognosis and targets for therapy. Int J Biochem Cell Biol. 2010;42:1273–81.CrossRefGoogle Scholar
  11. 11.
    Xia H, Li Y, Lv X. MicroRNA-107 inhibits tumor growth and metastasis by targeting the BDNF-mediated PI3K/AKT pathway in human non-small lung cancer. Int J Oncol. 2016;49(4):1325–33.CrossRefGoogle Scholar
  12. 12.
    Lu C, Xie Z, Peng Q. MiRNA-107 enhances chemosensitivity to paclitaxel by targeting antiapoptotic factor Bcl-w in non small cell lung cancer. Am J Cancer Res 2017,7(9):1863.Google Scholar
  13. 13.
    Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66:115–32.CrossRefGoogle Scholar
  14. 14.
    Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov. 2010;9:775–89.CrossRefGoogle Scholar
  15. 15.
    Lin Z, Li JW, Wang Y, et al. Abnormal miRNA-30e expression is associated with breast cancer progression. Clin Lab. 2016;62:121–8.Google Scholar
  16. 16.
    Kwak S, Kim B, Ahn H, et al. Ionizing radiation-inducible miR-30e promotes glioma cell invasion through EGFR stabilization by directly targeting CBL-B. Febs J. 2015;282(8):1512–25.CrossRefGoogle Scholar
  17. 17.
    Hershkovitzrokah O, Modai S, Pasmanikchor M, et al. MiR-30e induces apoptosis and sensitizes K562 cells to imatinib treatment via regulation of the BCR-ABL protein. Cancer Lett. 2015;356(2):597–605.CrossRefGoogle Scholar
  18. 18.
    Wang X, Ju Y, Zhou MI, Liu X, Zhou C. Upregulation of SOX9 promotes cell proliferation, migration and invasion in lung adenocarcinoma. Oncol Lett. 2015;10:990–4.CrossRefGoogle Scholar
  19. 19.
    Wang X, Liu Y, Liu X, Yang J, Teng G, Zhang L, Zhou C. MiR-124 inhibits cell proliferation, migration and invasion by directly targeting SOX9 in lung adenocarcinoma. Oncol Rep. 2016;35:3115–21.CrossRefGoogle Scholar
  20. 20.
    Zhang YJ, Xu F, Zhang YJ, Li HB, Han JC, Li L. miR-206 inhibits non small cell lung cancer cell proliferation and invasion by targeting SOX9. Int J Clin Exp Med. 2015;8:9107–13.Google Scholar
  21. 21.
    Zhu D, Chen H, Yang X, Chen W, Wang L, Xu J, Yu L. miR-32 functions as a tumor suppressor and directly targets SOX9 in human non-small cell lung cancer. Onco Targets Ther. 2015;8:1773–83.CrossRefGoogle Scholar
  22. 22.
    Wang H, Leav I, Ibaragi S, Wegner M, Hu GF, Lu ML, Balk SP, Yuan X. SOX9 is expressed in human fetal prostate epithelium and enhances prostate cancer invasion. Cancer Res. 2008;68:1625–30.CrossRefGoogle Scholar
  23. 23.
    Muller P, Crofts JD, Newman BS, Bridgewater LC, Lin CY, Gustafsson JA, Strom A. SOX9 mediates the retinoic acid-induced HES-1 gene expression in human breast cancer cells. Breast Cancer Res Treat. 2010;120:317–26.CrossRefGoogle Scholar
  24. 24.
    Bruun J, Kolberg M, Nesland JM, Svindland A, Nesbakken A, Lothe RA. Prognostic significance of beta-catenin, e-cadherin, and SOX9 in colorectal cancer: results from a large population-representative series. Front Oncol. 2014;4:118.CrossRefGoogle Scholar
  25. 25.
    Jiang SS, Fang WT, Hou YH, Huang SF, Yen BL, Chang JL, Li SM, Liu HP, Liu YL, Huang CT, Li YW, Jang TH, Chan SH, Yang SJ, Hsiung CA, Wu CW, Wang LH. Chang IS. Upregulation of SOX9 in lung adenocarcinoma and its involvement in the regulation of cell growth and tumorigenicity. Clin Cancer Res. 2010;16:4363–73.CrossRefGoogle Scholar
  26. 26.
    Zhou CH, Ye LP, Ye SX, Li Y, Zhang XY, Xu XY, Gong LY. Clinical significance of SOX9 in human non-small cell lung cancer progression and overall patient survival. J Exp Clin Cancer Res. 2012;31:18.CrossRefGoogle Scholar

Copyright information

© Japan Human Cell Society and Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  • Yanwei Cui
    • 1
    • 2
  • Lei Zhao
    • 1
    • 2
  • Shilei Zhao
    • 1
    • 2
  • Tao Guo
    • 1
    • 2
  • Fengzhou Li
    • 1
    • 2
  • Zhuoshi Li
    • 1
    • 2
  • Lei Fang
    • 1
    • 2
  • Taihua Wu
    • 3
    Email author
  • Chundong Gu
    • 1
    • 2
    Email author
  1. 1.Department of Thoracic SurgeryThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
  2. 2.Lung Cancer Diagnosis and Treatment Center of DalianThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
  3. 3.Departments of Respiratory MedicineThe First Affiliated Hospital of Dalian Medical UniversityDalianChina

Personalised recommendations