Skip to main content

Advertisement

Log in

Subcutaneously administered adrenomedullin exerts a potent therapeutic effect in a murine model of ulcerative colitis

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Adrenomedullin (AM) exerts a potent anti-inflammatory effect. Intrarectal or consecutive intravenous administrations of AM reduce pathological manifestations in rodent colitis models. However, in clinical applications, a safer administration route that provides stronger alleviation of patient burden is preferred. We investigated whether subcutaneously administered AM is effective against dextran sulfate sodium (DSS)-induced colitis. C57BL/6J mice were administered 1% DSS in drinking water and received AM at 8, 40 or 80 nmol/kg subcutaneously once a day for 7 consecutive days. Subcutaneously administered AM significantly and dose-dependently ameliorated body weight loss, diarrhea, and histological severity of colonic inflammation in DSS-treated mice. The AM therapeutic effect was associated with the upregulation of the production of autocrine AM, and expression of cAMP, c-fos, KLF4, and downregulation of STAT3 and NF-κB p65 phosphorylation, as well as a decrease in proinflammatory cytokine expression in the colon. Subcutaneous AM treatment potently attenuated DSS-induced colitis, which suggests that AM administered subcutaneously in ulcerative colitis (UC) patients may decrease diseases burden and improve quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. El Mourabet M, El-Hachem S, Harrison JR, et al. Anti-TNF antibody therapy for inflammatory bowel disease during pregnancy: a clinical review. Curr Drug Targets. 2010;11:234–41.

    Article  PubMed  Google Scholar 

  2. Park SC, Jeen YT. Anti-integrin therapy for inflammatory bowel disease. World J Gastroenterol. 2018;24:1868–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Terzic J, Grivennikov S, Karin E, et al. Inflammation and colon cancer. Gastroenterology. 2010;138:2101-14 e5.

    Article  CAS  Google Scholar 

  4. Eaden JA, Abrams KR, Mayberry JF. The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut. 2001;48:526–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gillen CD, Walmsley RS, Prior P, et al. Ulcerative colitis and Crohn’s disease: a comparison of the colorectal cancer risk in extensive colitis. Gut. 1994;35:1590–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chouraki V, Savoye G, Dauchet L, et al. The changing pattern of Crohn’s disease incidence in northern France: a continuing increase in the 10- to 19-year-old age bracket (1988–2007). Aliment Pharmacol Ther. 2011;33:1133–42.

    Article  CAS  PubMed  Google Scholar 

  7. Lopez J, Martinez A. Cell and molecular biology of the multifunctional peptide, adrenomedullin. Int Rev Cytol. 2002;221:1–92.

    Article  CAS  PubMed  Google Scholar 

  8. Poyner DR, Sexton PM, Marshall I, et al. International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol Rev. 2002;54:233–46.

    Article  CAS  PubMed  Google Scholar 

  9. Kitamura K, Kangawa K, Kawamoto M, et al. Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. Biochem Biophys Res Commun. 1993;192:553–60.

    Article  CAS  PubMed  Google Scholar 

  10. Martinez-Herrero S, Martinez A. Adrenomedullin regulates intestinal physiology and pathophysiology. Domest Anim Endocrinol. 2016;56(Suppl):66–83.

    Article  CAS  Google Scholar 

  11. Gonzalez-Rey E, Fernandez-Martin A, Chorny A, et al. Therapeutic effect of urocortin and adrenomedullin in a murine model of Crohn’s disease. Gut. 2006;55:824–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ashizuka S, Inagaki-Ohara K, Kuwasako K, et al. Adrenomedullin treatment reduces intestinal inflammation and maintains epithelial barrier function in mice administered dextran sulphate sodium. Microbiol Immunol. 2009;53:573–81.

    Article  CAS  PubMed  Google Scholar 

  13. Martinez-Herrero S, Larrayoz IM, Narro-Iniguez J, et al. Lack of adrenomedullin aggravates acute TNBS-induced colitis symptoms in mice, especially in females. Front Physiol. 2017;8:1058.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Martinez-Herrero S, Larrayoz IM, Narro-Iniguez J, et al. Lack of adrenomedullin results in microbiota changes and aggravates azoxymethane and dextran sulfate sodium-induced colitis in mice. Front Physiol. 2016;7:595.

    PubMed  PubMed Central  Google Scholar 

  15. Ashizuka S, Inatsu H, Kita T, et al. Adrenomedullin therapy in patients with refractory ulcerative colitis: a case series. Dig Dis Sci. 2016;61:872–80.

    Article  CAS  PubMed  Google Scholar 

  16. Ashizuka S, Kita T, Inatsu H, et al. Adrenomedullin: a novel therapy for intractable ulcerative colitis. Inflamm Bowel Dis. 2013;19:E26-7.

    Article  PubMed  Google Scholar 

  17. Nagata S, Yamasaki M, Kitamura K. Anti-inflammatory effects of PEGylated human adrenomedullin in a mouse DSS-induced colitis model. Drug Dev Res. 2017;78:129–34.

    Article  CAS  PubMed  Google Scholar 

  18. Inagaki-Ohara K, Okamoto S, Takagi K, et al. Leptin receptor signaling is required for high-fat diet-induced atrophic gastritis in mice. Nutr Metab (Lond). 2016;13:7.

    Article  CAS  Google Scholar 

  19. Inagaki-Ohara K, Sasaki A, Matsuzaki G, et al. Suppressor of cytokine signalling 1 in lymphocytes regulates the development of intestinal inflammation in mice. Gut. 2006;55:212–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Najjar YG, Rayman P, Jia X, et al. Myeloid-derived suppressor cell subset accumulation in renal cell carcinoma parenchyma is associated with intratumoral expression of IL1beta, IL8, CXCL5, and Mip-1alpha. Clin Cancer Res. 2017;23:2346–55.

    Article  CAS  PubMed  Google Scholar 

  21. Inagaki-Ohara K, Chinen T, Matsuzaki G, et al. Mucosal T cells bearing TCRgammadelta play a protective role in intestinal inflammation. J Immunol. 2004;173:1390–8.

    Article  CAS  PubMed  Google Scholar 

  22. DeRoche TC, Xiao SY, Liu X. Histological evaluation in ulcerative colitis. Gastroenterol Rep (Oxf). 2014;2:178–92.

    Article  Google Scholar 

  23. Koga K, Takaesu G, Yoshida R, et al. Cyclic adenosine monophosphate suppresses the transcription of proinflammatory cytokines via the phosphorylated c-Fos protein. Immunity. 2009;30:372–83.

    Article  CAS  PubMed  Google Scholar 

  24. Thomson LM, Kapas S, Carroll M, et al. Autocrine role of adrenomedullin in the human adrenal cortex. J Endocrinol. 2001;170:259–65.

    Article  CAS  PubMed  Google Scholar 

  25. Maki T, Ihara M, Fujita Y, et al. Angiogenic and vasoprotective effects of adrenomedullin on prevention of cognitive decline after chronic cerebral hypoperfusion in mice. Stroke. 2011;42:1122–8.

    Article  CAS  PubMed  Google Scholar 

  26. Grivennikov S, Karin E, Terzic J, et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell. 2009;15:103–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fyderek K, Strus M, Kowalska-Duplaga K, et al. Mucosal bacterial microflora and mucus layer thickness in adolescents with inflammatory bowel disease. World J Gastroenterol. 2009;15:5287–94.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wenzel UA, Magnusson MK, Rydstrom A, et al. Spontaneous colitis in Muc2-deficient mice reflects clinical and cellular features of active ulcerative colitis. PLoS One. 2014;9:e100217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Neurath MF. New targets for mucosal healing and therapy in inflammatory bowel diseases. Mucosal Immunol. 2014;7:6–19.

    Article  CAS  PubMed  Google Scholar 

  30. Hasnain SZ, Tauro S, Das I, et al. IL-10 promotes production of intestinal mucus by suppressing protein misfolding and endoplasmic reticulum stress in goblet cells. Gastroenterology. 2013;144:357–68 e9.

    Article  CAS  PubMed  Google Scholar 

  31. Katz JP, Perreault N, Goldstein BG, et al. The zinc-finger transcription factor Klf4 is required for terminal differentiation of goblet cells in the colon. Development. 2002;129:2619–28.

    CAS  PubMed  Google Scholar 

  32. Ghaleb AM, Laroui H, Merlin D, et al. Genetic deletion of Klf4 in the mouse intestinal epithelium ameliorates dextran sodium sulfate-induced colitis by modulating the NF-kappaB pathway inflammatory response. Inflamm Bowel Dis. 2014;20:811–20.

    Article  PubMed  Google Scholar 

  33. Gersemann M, Becker S, Kubler I, et al. Differences in goblet cell differentiation between Crohn’s disease and ulcerative colitis. Differentiation. 2009;77:84–94.

    Article  CAS  PubMed  Google Scholar 

  34. Prossomariti A, Scaioli E, Piazzi G, et al. Short-term treatment with eicosapentaenoic acid improves inflammation and affects colonic differentiation markers and microbiota in patients with ulcerative colitis. Sci Rep. 2017;7:7458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rowe J, Finlay-Jones JJ, Nicholas TE, et al. Inability of histamine to regulate TNF-alpha production by human alveolar macrophages. Am J Respir Cell Mol Biol. 1997;17:218–26.

    Article  CAS  PubMed  Google Scholar 

  36. Spehlmann ME, Eckmann L. Nuclear factor-kappa B in intestinal protection and destruction. Curr Opin Gastroenterol. 2009;25:92–9.

    Article  CAS  PubMed  Google Scholar 

  37. Suzuki A, Hanada T, Mitsuyama K, et al. CIS3/SOCS3/SSI3 plays a negative regulatory role in STAT3 activation and intestinal inflammation. J Exp Med. 2001;193:471–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bollrath J, Phesse TJ, von Burstin VA, et al. gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell. 2009;15:91–102.

    Article  CAS  PubMed  Google Scholar 

  39. Takeda K, Clausen BE, Kaisho T, et al. Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity. 1999;10:39–49.

    Article  CAS  PubMed  Google Scholar 

  40. Hsieh FC, Cheng G, Lin J. Evaluation of potential Stat3-regulated genes in human breast cancer. Biochem Biophys Res Commun. 2005;335:292–9.

    Article  CAS  PubMed  Google Scholar 

  41. Lim SY, Ahn SH, Park H, et al. Transcriptional regulation of adrenomedullin by oncostatin M in human astroglioma cells: implications for tumor invasion and migration. Sci Rep. 2014;4:6444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hall J, Guo G, Wray J, et al. Oct4 and LIF/Stat3 additively induce Kruppel factors to sustain embryonic stem cell self-renewal. Cell Stem Cell. 2009;5:597–609.

    Article  CAS  PubMed  Google Scholar 

  43. Ou L, Shi Y, Dong W, et al. Kruppel-like factor KLF4 facilitates cutaneous wound healing by promoting fibrocyte generation from myeloid-derived suppressor cells. J Invest Dermatol. 2015;135:1425–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants-in-Aid for Scientific Research (C) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (16K09316). We would like to thank all of members of the Division of Host Defense of the Prefectural University of Hiroshima for animal care support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoko Inagaki-Ohara.

Ethics declarations

Conflict of interest

Kazuo Kitamura holds the stock of Himuka AM Pharma Corp. Yuta Kinoshita, Seiya Arita, Haruka Murazoe, Shinya Ashizuka, and Kyoko Inagaki-Ohara have no conflicts of interest to declare.

Ethical approval

All animal experiments were conducted in accordance with the guidelines of the Animal Research Committee of the Prefectural University of Hiroshima Animal Care and Use Committee.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kinoshita, Y., Arita, S., Murazoe, H. et al. Subcutaneously administered adrenomedullin exerts a potent therapeutic effect in a murine model of ulcerative colitis. Human Cell 32, 12–21 (2019). https://doi.org/10.1007/s13577-018-0219-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-018-0219-9

Keywords

Navigation