Skip to main content

Advertisement

Log in

Circulating miR-215-5p and miR-642a-5p as potential biomarker for diagnosis of osteosarcoma in Mexican population

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Osteosarcoma is the most common malignant bone neoplasia affecting individuals in the second decade of life. The survival rate has not been improved during the last 25 years, in part because of the lack of specific markers. The microRNAs have been identified as important regulators of gene expression, experimental evidence suggests these molecules as key players in cancer development and progression. To identify miRNAs differentially expressed in serum from patients with osteosarcoma compared to healthy donors in Mexican population. Fifteen osteosarcoma patients and fifteen age and sex matched healthy individuals were recruited. Two pools of total RNA extracted from serum per study group were prepared and the miRNA expression profiles were analyzed through TaqMan Low Density Arrays. Validation was carried out through RT-qPCR using individual TaqMan assays for those miRNAs differentially expressed. Fifteen miRNAs were differentially expressed in osteosarcoma patients compared to healthy controls. Overexpression of miR-215-5p and miR-642a-5p was confirmed by validation through RT-qPCR. The expression analysis of miRNAs from serum in osteosarcoma patients revealed differential expression of miR-215-5p and miR-642a-5p. Both microRNAs are potential markers for osteosarcoma diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ando K, Oise Heymann M-F, Stresing V, et al. Current therapeutic strategies and novel approaches in osteosarcoma. Cancers (Basel). 2013;5:591–616. https://doi.org/10.3390/cancers5020591.

    Article  CAS  Google Scholar 

  2. Baena-Ocampo del LC, Ramirez-Perez E, Linares-Gonzalez LM, Delgado-Chavez R. Epidemiology of bone tumors in Mexico City: retrospective clinicopathologic study of 566 patients at a referral institution. Ann Diagn Pathol. 2009;13:16–21. https://doi.org/10.1016/j.anndiagpath.2008.07.005.

    Article  Google Scholar 

  3. Hogendoorn PCW, Athanasou N, Bielack S, Al. E. Bone sarcomas: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2010;21:204–13. https://doi.org/10.1093/annonc/mdq223.

    Article  Google Scholar 

  4. Geller DS, Gorlick R. Osteosarcoma: a review of diagnosis, management, and treatment strategies. Clin Adv Hematol Oncol. 2010;8:705–18. https://doi.org/10.1037/0278-7393.16.2.305.

    Article  PubMed  Google Scholar 

  5. Luetke A, Meyers PA, Lewis I, Juergens H. Osteosarcoma treatment—where do we stand? A state of the art review. Cancer Treat Rev. 2014;40:523–32. https://doi.org/10.1016/j.ctrv.2013.11.006.

    Article  PubMed  Google Scholar 

  6. Morrow JJ, Khanna C. Osteosarcoma genetics and epigenetics: emerging biology and candidate therapies. Crit Rev Oncog. 2015;20:173–97.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rivera-Luna R, Shalkow-Klincovstein J, Velasco-Hidalgo L, et al. Descriptive epidemiology in Mexican children with cancer under an open national public health insurance program. BMC Cancer. 2014;14:790. https://doi.org/10.1186/1471-2407-14-790.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Centro Nacional para la Salud de la Infancia y Adolescencia. Secretaría de Salud. Comportamiento epidemiológico del cáncer en menores de 18 años. México 2008–2014. p. 245. Available on http://censia.salud.gob.mx/contenidos/descargas/cancer/20160601_Boletin-2014_SEDP12sep16_4.pdf

  9. Gianferante DM, Mirabello L, Savage SA. Germline and somatic genetics of osteosarcoma—connecting aetiology, biology and therapy. Nat Rev Endocrinol. 2017. https://doi.org/10.1038/nrendo.2017.16.

    Article  PubMed  Google Scholar 

  10. Wan-Ibrahim W, Singh V. Biomarkers for bone tumors: discovery from genomics and proteomics studies and their challenges. Mol Med. 2015;21:1. https://doi.org/10.2119/molmed.2015.00183.

    Article  CAS  Google Scholar 

  11. Lan H, Lu H, Wang X, Jin H. MicroRNAs as potential biomarkers in cancer: opportunities and challenges. Biomed Res Int. 2015. https://doi.org/10.1155/2015/125094.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Armand-Labit V, Pradines A. Circulating cell-free microRNAs as clinical cancer biomarkers. BioMol Concepts. 2017;8:1–21. https://doi.org/10.1515/bmc-2017-0002.

    Article  CAS  Google Scholar 

  13. Li H, Zhang K, Liu LIH, et al. MicroRNA screening identifies circulating microRNAs as potential biomarkers for osteosarcoma. Oncol Rep. 2015;10:1662–8. https://doi.org/10.3892/ol.2015.3378.

    Article  CAS  Google Scholar 

  14. Lian F, Cui Y, Zhou C, et al. Identification of a plasma four-microRNA panel as potential noninvasive biomarker for osteosarcoma. PLoS One. 2015;10:1–12. https://doi.org/10.1371/journal.pone.0121499.

    Article  CAS  Google Scholar 

  15. Zhang J, Yan YG, Wang C, et al. MicroRNAs in osteosarcoma. Clin Chim Acta. 2015;444:9–17. https://doi.org/10.1016/j.cca.2015.01.025.

    Article  PubMed  CAS  Google Scholar 

  16. Mestdagh P, Van Vlierberghe P, De Weer A, et al. A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol. 2009;10:R64. https://doi.org/10.1186/gb-2009-10-6-r64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Lu T-P, Lee C-Y, Tsai M-H, et al. miRSystem: an integrated system for characterizing enriched functions and pathways of MicroRNA Targets. PLoS One. 2012;7:e42390. https://doi.org/10.1371/journal.pone.0042390.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Fan Y, Siklenka K, Arora SK, et al. miRNet - dissecting miRNA-target interactions and functional associations through network-based visual analysis. Nucleic Acids Res. 2016;44:W135–W141. https://doi.org/10.1093/nar/gkw288.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Deng Y, Huang Z, Xu Y, et al. MiR-215 modulates gastric cancer cell proliferation by targeting RB1. Cancer Lett. 2014;342:27–35. https://doi.org/10.1016/j.canlet.2013.08.033.

    Article  PubMed  CAS  Google Scholar 

  20. Wei Y, Sun J, Li X. MicroRNA-215 enhances invasion and migration by targeting retinoblastoma tumor suppressor gene 1 in high-grade glioma. Biotechnol Lett. 2017;39:197–205. https://doi.org/10.1007/s10529-016-2251-8.

    Article  PubMed  CAS  Google Scholar 

  21. Martin JW, Squire JA, Zielenska M. The genetics of osteosarcoma. Sarcoma. 2012. https://doi.org/10.1155/2012/627254.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zou GM. Cancer initiating cells or cancer stem cells in the gastrointestinal tract and liver. J Cell Physiol. 2008;217:598–604. https://doi.org/10.1002/jcp.21541.

    Article  PubMed  CAS  Google Scholar 

  23. Zhang Z, Meng H, Wang N, et al. Serum microRNA 143 and microRNA 215 as potential biomarkers for the diagnosis of chronic hepatitis and hepatocellular carcinoma. Diagn Pathol. 2014;9:135. https://doi.org/10.1186/1746-1596-9-135.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Nordentoft I, Birkenkamp-demtroder K, Agerbæk M, et al. miRNAs associated with chemo-sensitivity in cell lines and in advanced bladder cancer. BMC Med Genomics. 2012;5:1–11.

    Article  CAS  Google Scholar 

  25. He J, Hua J, Ding N, et al. Modulation of microRNAs by ionizing radiation in human gastric cancer. Oncol Rep. 2014;32:787–93. https://doi.org/10.3892/or.2014.3246.

    Article  PubMed  Google Scholar 

  26. Kumar S, Kumar A, Shah PP, et al. MicroRNA signature of cis-platin resistant vs. cis-platin sensitive ovarian cancer cell lines. J Ovarian Res. 2011;4:17. https://doi.org/10.1186/1757-2215-4-17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Fondo Sectorial para Instituciones de Seguridad Social (FOSISS) CONACYT number 261525-S0008-2015-2 and the Instituto Nacional de Medicina Genómica (INMEGEN) Grant #202-13/2015/I.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rafael Velázquez-Cruz or Alberto Hidalgo-Bravo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures were approved by the Institutional Ethics Committee. Personal data of the participants were protected.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 59 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monterde-Cruz, L., Ramírez-Salazar, E.G., Rico-Martínez, G. et al. Circulating miR-215-5p and miR-642a-5p as potential biomarker for diagnosis of osteosarcoma in Mexican population. Human Cell 31, 292–299 (2018). https://doi.org/10.1007/s13577-018-0214-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-018-0214-1

Keywords

Navigation