Skip to main content
Log in

Atrial overexpression of microRNA-27b attenuates angiotensin II-induced atrial fibrosis and fibrillation by targeting ALK5

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Atrial fibrosis influences atrial fibrillation (AF) development by transforming growth factor beta 1 (TGF-β1)/Smad pathway. Although microRNAs are implicated in the pathogenesis of various diseases, information regarding the functional role of microRNAs in atrial dysfunction is limited. In the present study, we found that microRNA-27b (miR-27b) was the dominant member of miR-27 family expressed in left atrium. Moreover, the expression of miR-27b was significantly reduced after angiotensin II (AngII) infusion. Masson’s trichrome staining revealed that delivery of miR-27b adeno-associated virus to left atrium led to a decrease in atrial fibrosis induced by AngII. The increased expression of collagen I, collagen III, plasminogen activator inhibitor type 1 and alpha smooth muscle actin was also inhibited after miR-27b upregulation. In isolated perfused hearts, miR-27b restoration markedly attenuated AngII-induced increase in interatrial conduction time, AF incidence and AF duration. Furthermore, our data evidence that miR-27b is a novel miRNA that targets ALK5, a receptor of TGF-β1, through binding to the 3′ untranslated region of ALK5 mRNA. Ectopic miR-27b suppressed luciferase activity and expression of ALK5, whereas inhibition of miR-27b increased ALK5 luciferase activity and expression. Additionally, miR-27b inhibited AngII-induced Smad-2/3 phosphorylation without altering Smad-1 activity. Taken together, our study demonstrates that miR-27b ameliorates atrial fibrosis and AF through inactivation of Smad-2/3 pathway by targeting ALK5, suggesting miR-27b may play an anti-fibrotic role in left atrium and function as a novel therapeutic target for the treatment of cardiac dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Roche PL, Filomeno KL, Bagchi RA, Czubryt MP. Intracellular signaling of cardiac fibroblasts. Compr Physiol. 2015;5(2):721–60. https://doi.org/10.1002/cphy.c140044.

    Article  PubMed  Google Scholar 

  2. Liu F, Levin MD, Petrenko NB, Lu MM, Wang T, Yuan LJ, Stout AL, Epstein JA, Patel VV. Histone-deacetylase inhibition reverses atrial arrhythmia inducibility and fibrosis in cardiac hypertrophy independent of angiotensin. J Mol Cell Cardiol. 2008;45(6):715–23. https://doi.org/10.1016/j.yjmcc.2008.08.015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Li D, Shinagawa K, Pang L, Leung TK, Cardin S, Wang Z, Nattel S. Effects of angiotensin-converting enzyme inhibition on the development of the atrial fibrillation substrate in dogs with ventricular tachypacing-induced congestive heart failure. Circulation. 2001;104(21):2608–14.

    Article  PubMed  CAS  Google Scholar 

  4. Leask A. Getting to the heart of the matter: new insights into cardiac fibrosis. Circ Res. 2015;116(7):1269–76. https://doi.org/10.1161/CIRCRESAHA.116.305381.

    Article  PubMed  CAS  Google Scholar 

  5. Massague J. TGFbeta signalling in context. Nat Rev Mol Cell Biol. 2012;13(10):616–30. https://doi.org/10.1038/nrm3434.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Doetschman T, Barnett JV, Runyan RB, Camenisch TD, Heimark RL, Granzier HL, Conway SJ, Azhar M. Transforming growth factor beta signaling in adult cardiovascular diseases and repair. Cell Tissue Res. 2012;347(1):203–23. https://doi.org/10.1007/s00441-011-1241-3.

    Article  PubMed  CAS  Google Scholar 

  7. Xu P, Liu J, Derynck R. Post-translational regulation of TGF-beta receptor and Smad signaling. FEBS Lett. 2012;586(14):1871–84. https://doi.org/10.1016/j.febslet.2012.05.010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. van den Berg NWE, Kawasaki M, Berger WR, Neefs J, Meulendijks E, Tijsen AJ, de Groot JR. MicroRNAs in atrial fibrillation: from expression signatures to functional implications. Cardiovasc Drugs Ther. 2017;31(3):345–65. https://doi.org/10.1007/s10557-017-6736-z.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Devaux Y, Mueller M, Haaf P, Goretti E, Twerenbold R, Zangrando J, Vausort M, Reichlin T, Wildi K, Moehring B, Wagner DR, Mueller C. Diagnostic and prognostic value of circulating microRNAs in patients with acute chest pain. J Intern Med. 2015;277(2):260–71. https://doi.org/10.1111/joim.12183.

    Article  PubMed  CAS  Google Scholar 

  10. Wang GK, Zhu JQ, Zhang JT, Li Q, Li Y, He J, Qin YW, Jing Q. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J. 2010;31(6):659–66. https://doi.org/10.1093/eurheartj/ehq013.

    Article  PubMed  CAS  Google Scholar 

  11. Harling L, Lambert J, Ashrafian H, Darzi A, Gooderham NJ, Athanasiou T. Elevated serum microRNA 483-5p levels may predict patients at risk of post-operative atrial fibrillation. Eur J Cardio Thorac Surg Off J Eur Assoc Cardio Thorac Surg. 2017;51(1):73–8. https://doi.org/10.1093/ejcts/ezw245.

    Article  Google Scholar 

  12. Lu Y, Hou S, Huang D, Luo X, Zhang J, Chen J, Xu W. Expression profile analysis of circulating microRNAs and their effects on ion channels in Chinese atrial fibrillation patients. Int J Clin Exp Med. 2015;8(1):845–53.

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Liu Z, Zhou C, Liu Y, Wang S, Ye P, Miao X, Xia J. The expression levels of plasma micoRNAs in atrial fibrillation patients. PLoS One. 2012;7(9):e44906. https://doi.org/10.1371/journal.pone.0044906.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. McManus DD, Lin H, Tanriverdi K, Quercio M, Yin X, Larson MG, Ellinor PT, Levy D, Freedman JE, Benjamin EJ. Relations between circulating microRNAs and atrial fibrillation: data from the Framingham Offspring Study. Heart Rhythm. 2014;11(4):663–9. https://doi.org/10.1016/j.hrthm.2014.01.018.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lu Y, Zhang Y, Wang N, Pan Z, Gao X, Zhang F, Zhang Y, Shan H, Luo X, Bai Y, Sun L, Song W, Xu C, Wang Z, Yang B. MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation. Circulation. 2010;122(23):2378–87. https://doi.org/10.1161/CIRCULATIONAHA.110.958967.

    Article  PubMed  CAS  Google Scholar 

  16. Bernardo BC, Nguyen SS, Gao XM, Tham YK, Ooi JY, Patterson NL, Kiriazis H, Su Y, Thomas CJ, Lin RC, Du XJ, McMullen JR. Inhibition of miR-154 protects against cardiac dysfunction and fibrosis in a mouse model of pressure overload. Sci Rep. 2016;6:22442. https://doi.org/10.1038/srep22442.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Wakisaka O, Takahashi N, Shinohara T, Ooie T, Nakagawa M, Yonemochi H, Hara M, Shimada T, Saikawa T, Yoshimatsu H. Hyperthermia treatment prevents angiotensin II-mediated atrial fibrosis and fibrillation via induction of heat-shock protein 72. J Mol Cell Cardiol. 2007;43(5):616–26. https://doi.org/10.1016/j.yjmcc.2007.08.005.

    Article  PubMed  CAS  Google Scholar 

  18. Kume O, Takahashi N, Wakisaka O, Nagano-Torigoe Y, Teshima Y, Nakagawa M, Yufu K, Hara M, Saikawa T, Yoshimatsu H. Pioglitazone attenuates inflammatory atrial fibrosis and vulnerability to atrial fibrillation induced by pressure overload in rats. Heart Rhythm. 2011;8(2):278–85. https://doi.org/10.1016/j.hrthm.2010.10.029.

    Article  PubMed  Google Scholar 

  19. van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD, Richardson JA, Olson EN. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA. 2006;103(48):18255–60. https://doi.org/10.1073/pnas.0608791103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Veliceasa D, Biyashev D, Qin G, Misener S, Mackie AR, Kishore R, Volpert OV. Therapeutic manipulation of angiogenesis with miR-27b. Vasc Cell. 2015;7:6. https://doi.org/10.1186/s13221-015-0031-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Zou B, Ge Z, Zhu W, Xu Z, Li C. Persimmon tannin represses 3T3-L1 preadipocyte differentiation via up-regulating expression of miR-27 and down-regulating expression of peroxisome proliferator-activated receptor-gamma in the early phase of adipogenesis. Eur J Nutr. 2015;54(8):1333–43. https://doi.org/10.1007/s00394-014-0814-9.

    Article  PubMed  CAS  Google Scholar 

  22. Sun L, Trajkovski M. MiR-27 orchestrates the transcriptional regulation of brown adipogenesis. Metab Clin Exp. 2014;63(2):272–82. https://doi.org/10.1016/j.metabol.2013.10.004.

    Article  PubMed  CAS  Google Scholar 

  23. Zhang M, Wu JF, Chen WJ, Tang SL, Mo ZC, Tang YY, Li Y, Wang JL, Liu XY, Peng J, Chen K, He PP, Lv YC, Ouyang XP, Yao F, Tang DP, Cayabyab FS, Zhang DW, Zheng XL, Tian GP, Tang CK. MicroRNA-27a/b regulates cellular cholesterol efflux, influx and esterification/hydrolysis in THP-1 macrophages. Atherosclerosis. 2014;234(1):54–64. https://doi.org/10.1016/j.atherosclerosis.2014.02.008.

    Article  PubMed  CAS  Google Scholar 

  24. Xie W, Li L, Zhang M, Cheng HP, Gong D, Lv YC, Yao F, He PP, Ouyang XP, Lan G, Liu D, Zhao ZW, Tan YL, Zheng XL, Yin WD, Tang CK. MicroRNA-27 prevents atherosclerosis by suppressing lipoprotein lipase-induced lipid accumulation and inflammatory response in apolipoprotein E knockout mice. PLoS One. 2016;11(6):e0157085. https://doi.org/10.1371/journal.pone.0157085.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Chinchilla A, Lozano E, Daimi H, Esteban FJ, Crist C, Aranega AE, Franco D. MicroRNA profiling during mouse ventricular maturation: a role for miR-27 modulating Mef2c expression. Cardiovasc Res. 2011;89(1):98–108. https://doi.org/10.1093/cvr/cvq264.

    Article  PubMed  CAS  Google Scholar 

  26. Hernandez-Torres F, Martinez-Fernandez S, Zuluaga S, Nebreda A, Porras A, Aranega AE, Navarro F. A role for p38alpha mitogen-activated protein kinase in embryonic cardiac differentiation. FEBS Lett. 2008;582(7):1025–31. https://doi.org/10.1016/j.febslet.2008.02.050.

    Article  PubMed  CAS  Google Scholar 

  27. Sayed D, Hong C, Chen IY, Lypowy J, Abdellatif M. MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res. 2007;100(3):416–24. https://doi.org/10.1161/01.RES.0000257913.42552.23.

    Article  PubMed  CAS  Google Scholar 

  28. Lijnen PJ, Petrov VV, Fagard RH. Induction of cardiac fibrosis by transforming growth factor-beta(1). Mol Genet Metab. 2000;71(1–2):418–35. https://doi.org/10.1006/mgme.2000.3032.

    Article  PubMed  CAS  Google Scholar 

  29. Kuwahara F, Kai H, Tokuda K, Kai M, Takeshita A, Egashira K, Imaizumi T. Transforming growth factor-beta function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation. 2002;106(1):130–5.

    Article  PubMed  CAS  Google Scholar 

  30. Cheng R, Dang R, Zhou Y, Ding M, Hua H. MicroRNA-98 inhibits TGF-beta1-induced differentiation and collagen production of cardiac fibroblasts by targeting TGFBR1. Hum Cell. 2017;30(3):192–200. https://doi.org/10.1007/s13577-017-0163-0.

    Article  PubMed  CAS  Google Scholar 

  31. Hong Y, Cao H, Wang Q, Ye J, Sui L, Feng J, Cai X, Song H, Zhang X, Chen X. MiR-22 may suppress fibrogenesis by targeting TGFbetaR I in cardiac fibroblasts. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol. 2016;40(6):1345–53. https://doi.org/10.1159/000453187.

    Article  CAS  Google Scholar 

  32. Zhao X, Wang K, Liao Y, Zeng Q, Li Y, Hu F, Liu Y, Meng K, Qian C, Zhang Q, Guan H, Feng K, Zhou Y, Du Y, Chen Z. MicroRNA-101a inhibits cardiac fibrosis induced by hypoxia via targeting TGFbetaRI on cardiac fibroblasts. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol. 2015;35(1):213–26. https://doi.org/10.1159/000369689.

    Article  CAS  Google Scholar 

  33. Morine KJ, Qiao X, Paruchuri V, Aronovitz MJ, Mackey EE, Buiten L, Levine J, Ughreja K, Nepali P, Blanton RM, Oh SP, Karas RH, Kapur NK. Reduced activin receptor-like kinase 1 activity promotes cardiac fibrosis in heart failure. Cardiovasc Pathol Off J Soc Cardiovasc Pathol. 2017;31:26–33. https://doi.org/10.1016/j.carpath.2017.07.004.

    Article  CAS  Google Scholar 

  34. Wang Q, Yu Y, Zhang P, Chen Y, Li C, Chen J, Wang Y, Li Y. The crucial role of activin A/ALK4 pathway in the pathogenesis of Ang-II-induced atrial fibrosis and vulnerability to atrial fibrillation. Basic Res Cardiol. 2017;112(4):47. https://doi.org/10.1007/s00395-017-0634-1.

    Article  PubMed  CAS  Google Scholar 

  35. Hu J, Wang X, Wei SM, Tang YH, Zhou Q, Huang CX. Activin A stimulates the proliferation and differentiation of cardiac fibroblasts via the ERK1/2 and p38-MAPK pathways. Eur J Pharmacol. 2016;789:319–27. https://doi.org/10.1016/j.ejphar.2016.07.053.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanshan Wang.

Ethics declarations

Ethical standards

All animal experiments were carried out according to the institutional guidelines from the Care and Use of Laboratory Animals of Cangzhou Central Hospital and were approved by the Institutional Animal Ethics Committee.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Cai, H., Li, H. et al. Atrial overexpression of microRNA-27b attenuates angiotensin II-induced atrial fibrosis and fibrillation by targeting ALK5. Human Cell 31, 251–260 (2018). https://doi.org/10.1007/s13577-018-0208-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-018-0208-z

Keywords

Navigation