Human Cell

, Volume 31, Issue 3, pp 232–241 | Cite as

Long non-coding RNA (lncRNA) MAGI2-AS3 inhibits breast cancer cell growth by targeting the Fas/FasL signalling pathway

  • Yong Yang
  • Hong Yang
  • Miao Xu
  • Haibin Zhang
  • Mingtao Sun
  • Peng Mu
  • Tongbao Dong
  • Shanmei Du
  • Kui Liu
Research Article


Long non-coding RNAs (lncRNAs) are non-protein-coding transcripts shown to play important roles in tumourigenesis and tumour progression. Our study aimed to examine expression of the lncRNA MAGI2-AS3 in breast cancer and to explore its function in cancer cell growth. First, MAGI2-AS3 expression levels in clinical samples and cell lines were determined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The functional significance of MAGI2-AS3 in cancer cell proliferation and apoptosis was then examined in vitro. Our results showed MAGI2-AS3 to be down-regulated in breast cancer tissues compared to normal adjacent tissues. Moreover, MAGI2-AS3 markedly inhibited breast cancer cell growth and increased expression of Fas and Fas ligand (FasL). In conclusion, our data suggest that MAGI2-AS3 expression is decreased in breast cancer and that MAGI2-AS3 plays an important role as a tumour suppressor by targeting Fas and FasL signalling. These results provide new insight into novel clinical treatments for breast cancer.


lncRNA MAGI2-AS3 Breast cancer Proliferation Fas/FasL 



This work was supported by Grants from the National Natural Science Foundation of China (No. 81602330) and the Natural Scientific Foundation of Shandong Province (No. ZR2015PH056). We also thank professor Sun of Jiangsu University for providing all of the cell lines.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.CrossRefPubMedGoogle Scholar
  2. 2.
    Chou J, Wang B, Zheng T, et al. MALAT1 induced migration and invasion of human breast cancer cells by competitively binding miR-1 with cdc42. Biochem Biophys Res Commun. 2016;472(1):262–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.CrossRefPubMedGoogle Scholar
  5. 5.
    Li CH, Chen Y. Targeting long non-coding RNAs in cancers: progress and prospects. Int J Biochem Cell Biol. 2013;45(8):1895–910.CrossRefPubMedGoogle Scholar
  6. 6.
    Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136(4):629–41.CrossRefPubMedGoogle Scholar
  7. 7.
    Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends Cell Biol. 2011;21(6):354–61.CrossRefPubMedGoogle Scholar
  8. 8.
    Chen R, Wang G, Zheng Y, et al. Long non-coding RNAs in osteosarcoma. Oncotarget. 2017;8(12):20462–75.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Dou J, Ni Y, He X, et al. Decreasing lncRNA HOTAIR expression inhibits human colorectal cancer stem cells. Am J Transl Res. 2016;8(1):98–108.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Milevskiy MJ, Al-Ejeh F, Saunus JM, et al. Long-range regulators of the lncRNA HOTAIR enhance its prognostic potential in breast cancer. Hum Mol Genet. 2016;25(15):3269–83.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hu Y, Sun X, Mao C, et al. Upregulation of long noncoding RNA TUG1 promotes cervical cancer cell proliferation and migration. Cancer Med. 2017;6(2):471–82.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wu M, Lin Z, Li X, et al. HULC cooperates with MALAT1 to aggravate liver cancer stem cells growth through telomere repeat-binding factor 2. Sci Rep. 2016;6:36045.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Benson JR, Jatoi I. The global breast cancer burden. Future Oncol. 2012;8(6):697–702.CrossRefPubMedGoogle Scholar
  14. 14.
    Mangolini A, Ferracin M, Zanzi MV, et al. Diagnostic and prognostic microRNAs in the serum of breast cancer patients measured by droplet digital PCR. Biomark Res. 2015;3:12.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Key TJ, Verkasalo PK, Banks E. Epidemiology of breast cancer. Lancet Oncol. 2001;2(3):133–40.CrossRefPubMedGoogle Scholar
  16. 16.
    Hugosson J, Stranne J, Carlsson SV. Radical retropubic prostatectomy: a review of outcomes and side-effects. Acta Oncol. 2011;50(Suppl 1):92–7.CrossRefPubMedGoogle Scholar
  17. 17.
    De Ruysscher D, Van Meerbeeck J, Vandecasteele K, et al. Radiation-induced oesophagitis in lung cancer patients. Is susceptibility for neutropenia a risk factor? Strahlenther Onkol. 2012;188(7):564–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Shi J, Dong B, Cao J, et al. Long non-coding RNA in glioma: signaling pathways. Oncotarget. 2017;8(16):27582–92.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Nagano T, Fraser P. No-nonsense functions for long noncoding RNAs. Cell. 2011;145(2):178–81.CrossRefPubMedGoogle Scholar
  20. 20.
    Li C, Gao Y, Li Y, Ding D. TUG1 mediates methotrexate resistance in colorectal cancer via miR-186/CPEB2 axis. Biochem Biophys Res Commun. 2017;491(2):552–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Mercer TR, Mattick JS. Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol. 2013;20(3):300–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Qi P, Du X. The long non-coding RNAs, a new cancer diagnostic and therapeutic gold mine. Mod Pathol. 2013;26(2):155–65.CrossRefPubMedGoogle Scholar
  23. 23.
    Liu H, Zhen Q, Fan Y. LncRNA GHET1 promotes esophageal squamous cell carcinoma cells proliferation and invasion via induction of EMT. Int J Biol Markers. 2017;32(4):e403–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Yu J, Hong JF, Kang J, et al. Promotion of LncRNA HOXA11-AS on the proliferation of hepatocellular carcinoma by regulating the expression of LATS1. Eur Rev Med Pharmacol Sci. 2017;21(15):3402–11.PubMedGoogle Scholar
  25. 25.
    Huarte M. The emerging role of lncRNAs in cancer. Nat Med. 2015;21(11):1253–61.CrossRefPubMedGoogle Scholar
  26. 26.
    Evans JR, Feng FY, Chinnaiyan AM. The bright side of dark matter: lncRNAs in cancer. J Clin Investig. 2016;126(8):2775–82.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Zhao L, Sun H, Kong H, et al. The Lncrna-TUG1/EZH2 axis promotes pancreatic cancer cell proliferation, migration and EMT Phenotype formation through sponging Mir-382. Cell Physiol Biochem. 2017;42(6):2145–58.CrossRefPubMedGoogle Scholar
  28. 28.
    Pei Z, Du X, Song Y, et al. Down-regulation of lncRNA CASC2 promotes cell proliferation and metastasis of bladder cancer by activation of the Wnt/beta-catenin signaling pathway. Oncotarget. 2017;8(11):18145–53.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Zeng C, Xu Y, Xu L, et al. Inhibition of long non-coding RNA NEAT1 impairs myeloid differentiation in acute promyelocytic leukemia cells. BMC Cancer. 2014;14:693.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011;146(3):353–8.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Cesana M, Cacchiarelli D, Legnini I, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell. 2011;147(2):358–69.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ke J, Yao YL, Zheng J, et al. Knockdown of long non-coding RNA HOTAIR inhibits malignant biological behaviors of human glioma cells via modulation of miR-326. Oncotarget. 2015;6(26):21934–49.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lu W, Zhang H, Niu Y, et al. Long non-coding RNA linc00673 regulated non-small cell lung cancer proliferation, migration, invasion and epithelial mesenchymal transition by sponging miR-150-5p. Mol Cancer. 2017;16(1):118.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Myong NH. Tissue microarray analysis of Fas and FasL expressions in human non-small cell lung carcinomas; with reference to the p53 and bcl-2 overexpressions. J Korean Med Sci. 2005;20(5):770–6.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Chang JS, Hsu YL, Kuo PL, et al. Upregulation of Fas/Fas ligand-mediated apoptosis by gossypol in an immortalized human alveolar lung cancer cell line. Clin Exp Pharmacol Physiol. 2004;31(10):716–22.CrossRefPubMedGoogle Scholar
  36. 36.
    Zhang YH, Fu J, Zhang ZJ, et al. LncRNA-LINC00152 down-regulated by miR-376c-3p restricts viability and promotes apoptosis of colorectal cancer cells. Am J Transl Res. 2016;8(12):5286–97.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Tasharrofi N, Kouhkan F, Soleimani M, et al. Survival improvement in human retinal pigment epithelial cells via Fas receptor targeting by miR-374a. J Cell Biochem. 2017;118(12):4854–61.CrossRefPubMedGoogle Scholar

Copyright information

© Japan Human Cell Society and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Yong Yang
    • 1
  • Hong Yang
    • 2
  • Miao Xu
    • 3
  • Haibin Zhang
    • 4
  • Mingtao Sun
    • 5
  • Peng Mu
    • 5
  • Tongbao Dong
    • 5
  • Shanmei Du
    • 5
  • Kui Liu
    • 6
  1. 1.Affiliated Hospital of Taishan Medical UniversityTai’anPeople’s Republic of China
  2. 2.Central Hospital of Tai’an CityTai’anPeople’s Republic of China
  3. 3.The Seventh People’s Hospital of ZiboZiboPeople’s Republic of China
  4. 4.Qingzhou People’s HospitalQingzhouPeople’s Republic of China
  5. 5.Zibo Vocational InstituteZiboPeople’s Republic of China
  6. 6.Center of Translational MedicineZibo Central HospitalZiboPeople’s Republic of China

Personalised recommendations