Advertisement

Human Cell

, Volume 31, Issue 3, pp 210–219 | Cite as

MiR-192-5p suppresses the growth of bladder cancer cells via targeting Yin Yang 1

  • Decai Ji
  • Lining Jiang
  • Yingjie Li
Research Article
  • 100 Downloads

Abstract

Bladder cancer has been identified as one of the most malignant cancers with high incidence and mortality. The underlying mechanisms by which regulate the tumorigenesis of bladder cancer deserve further investigation. Here, we found that miR-192-5p was downregulated in human bladder cancer cell lines and tissues. Overexpression of miR-192-5p significantly inhibited the growth of bladder cancer cells, while depletion of miR-192-5p exerted opposite effect. Bioinformatics analysis and molecular mechanism study identified that miR-192-5p targeted the transcription factor Yin Yang 1 (YY1) and decreased the expression level of YY1. Highly expressed YY1 attenuated the potential tumor suppressive function of miR-192-5p. The expression of miR-192-5p was negatively correlated with that of YY1 in bladder cancer tissues. These results indicated that miR-192-5p might serve as a promising target in bladder cancer diagnosis and therapy.

Keywords

miR-192-5p Bladder cancer YY1 Cell growth Gene expression 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interests.

References

  1. 1.
    Gordetsky J, Collingwood R, Lai WS, Del Carmen Rodriquez Pena M, Rais-Bahrami S. Second opinion expert pathology review in bladder cancer: implications for patient care. Int J Surg Pathol. 2017;26:12–7.  https://doi.org/10.1177/1066896917730903.CrossRefPubMedGoogle Scholar
  2. 2.
    Katafigiotis I, Sfoungaristos S, Martini A, Stravodimos K, Anastasiou I, Mykoniatis I, et al. Bladder cancer to patients younger than 30 years: a retrospective study and review of the literature. Urologia. 2017;84:231–5.  https://doi.org/10.5301/uj.5000264.CrossRefPubMedGoogle Scholar
  3. 3.
    Kutwin P, Konecki T, Cichocki M, Falkowski P, Jablonowski Z. Photodynamic diagnosis and narrow-band imaging in the management of bladder cancer: a review. Photomed Laser Surg. 2017;35(9):459–64.  https://doi.org/10.1089/pho.2016.4217.CrossRefPubMedGoogle Scholar
  4. 4.
    Tang X, Du P, Yang Y. The clinical use of neutrophil-to-lymphocyte ratio in bladder cancer patients: a systematic review and meta-analysis. Int J Clin Oncol. 2017.  https://doi.org/10.1007/s10147-017-1171-5.CrossRefPubMedGoogle Scholar
  5. 5.
    Kaufman DS, Shipley WU, Feldman AS. Bladder cancer. Lancet. 2009;374(9685):239–49.  https://doi.org/10.1016/S0140-6736(09)60491-8.CrossRefPubMedGoogle Scholar
  6. 6.
    Cilek EE, Ozturk H, Gur Dedeoglu B. Construction of miRNA-miRNA networks revealing the complexity of miRNA-mediated mechanisms in trastuzumab treated breast cancer cell lines. PLoS One. 2017;12(10):e0185558.  https://doi.org/10.1371/journal.pone.0185558.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lee S, Jiang X. Modeling miRNA-mRNA interactions that cause phenotypic abnormality in breast cancer patients. PLoS One. 2017;12(8):e0182666.  https://doi.org/10.1371/journal.pone.0182666.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Pradhan AK, Emdad L, Das SK, Sarkar D, Fisher PB. The enigma of miRNA regulation in cancer. Adv Cancer Res. 2017;135:25–52.  https://doi.org/10.1016/bs.acr.2017.06.001.CrossRefPubMedGoogle Scholar
  9. 9.
    Wang K, Chen M, Wu W. Analysis of microRNA (miRNA) expression profiles reveals 11 key biomarkers associated with non-small cell lung cancer. World J Surg Oncol. 2017;15(1):175.  https://doi.org/10.1186/s12957-017-1244-y.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Yang F, Ning Z, Ma L, Liu W, Shao C, Shu Y, et al. Exosomal miRNAs and miRNA dysregulation in cancer-associated fibroblasts. Mol Cancer. 2017;16(1):148.  https://doi.org/10.1186/s12943-017-0718-4.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Yu Y, Nangia-Makker P, Farhana L, Majumdar APN. A novel mechanism of lncRNA and miRNA interaction: cCAT2 regulates miR-145 expression by suppressing its maturation process in colon cancer cells. Mol Cancer. 2017;16(1):155.  https://doi.org/10.1186/s12943-017-0725-5.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Blanca A, Cheng L, Montironi R, Moch H, Massari F, Fiorentino M, et al. Mirna expression in bladder cancer and their potential role in clinical practice. Curr Drug Metab. 2017.  https://doi.org/10.2174/1389200218666170518164507.PubMedCrossRefGoogle Scholar
  13. 13.
    Braicu OL, Budisan L, Buiga R, Jurj A, Achimas-Cadariu P, Pop LA, et al. miRNA expression profiling in formalin-fixed paraffin-embedded endometriosis and ovarian cancer samples. Onco Targets Ther. 2017;10:4225–38.  https://doi.org/10.2147/OTT.S137107.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Chen Y, Min L, Ren C, Xu X, Yang J, Sun X, et al. miRNA-148a serves as a prognostic factor and suppresses migration and invasion through Wnt1 in non-small cell lung cancer. PLoS One. 2017;12(2):e0171751.  https://doi.org/10.1371/journal.pone.0171751.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Chen Y, Yang X, Xu Y, Cao J, Chen L. Genomic analysis of drug resistant small cell lung cancer cell lines by combining mRNA and miRNA expression profiling. Oncol Lett. 2017;13(6):4077–84.  https://doi.org/10.3892/ol.2017.5967.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Daniunaite K, Dubikaityte M, Gibas P, Bakavicius A, Rimantas Lazutka J, Ulys A, et al. Clinical significance of miRNA host gene promoter methylation in prostate cancer. Hum Mol Genet. 2017;26(13):2451–61.  https://doi.org/10.1093/hmg/ddx138.CrossRefPubMedGoogle Scholar
  17. 17.
    Eissa S, Habib H, Ali E, Kotb Y. Evaluation of urinary miRNA-96 as a potential biomarker for bladder cancer diagnosis. Med Oncol. 2015;32(1):413.  https://doi.org/10.1007/s12032-014-0413-x.CrossRefPubMedGoogle Scholar
  18. 18.
    Yang X, Shi L, Yi C, Yang Y, Chang L, Song D. MiR-210-3p inhibits the tumor growth and metastasis of bladder cancer via targeting fibroblast growth factor receptor-like 1. Am J Cancer Res. 2017;7(8):1738–53.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Shi HB, Yu JX, Yu JX, Feng Z, Zhang C, Li GY, et al. Diagnostic significance of microRNAs as novel biomarkers for bladder cancer: a meta-analysis of ten articles. World J Surg Oncol. 2017;15(1):147.  https://doi.org/10.1186/s12957-017-1201-9.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Yan-Chun L, Hong-Mei Y, Zhi-Hong C, Qing H, Yan-Hong Z, Ji-Fang W. MicroRNA-192-5p promote the proliferation and metastasis of hepatocellular carcinoma cell by targeting SEMA3A. Appl Immunohistochem Mol Morphol. 2015.  https://doi.org/10.1097/PAI.0000000000000296.CrossRefGoogle Scholar
  21. 21.
    Zou YF, Wen D, Zhao Q, Shen PY, Shi H, Zhao Q, et al. Urinary MicroRNA-30c-5p and MicroRNA-192-5p as potential biomarkers of ischemia–reperfusion-induced kidney injury. Exp Biol Med. 2017;242(6):657–67.  https://doi.org/10.1177/1535370216685005.CrossRefGoogle Scholar
  22. 22.
    Zhang Y, Huang R, Zhou W, Zhao Q, Lu Z. miR-192-5p mediates hypoxia/reoxygenation-induced apoptosis in H9c2 cardiomyocytes via targeting of FABP3. J Biochem Mol Toxicol. 2017;31(4).  https://doi.org/10.1002/jbt.21873.
  23. 23.
    Jin H, Qiao F, Wang Y, Xu Y, Shang Y. Curcumin inhibits cell proliferation and induces apoptosis of human non-small cell lung cancer cells through the upregulation of miR-192-5p and suppression of PI3K/Akt signaling pathway. Oncol Rep. 2015;34(5):2782–9.  https://doi.org/10.3892/or.2015.4258.CrossRefPubMedGoogle Scholar
  24. 24.
    Epstein JI, Amin MB, Reuter VR, Mostofi FK. The World Health Organization/International Society of Urological Pathology consensus classification of urothelial (transitional cell) neoplasms of the urinary bladder. Bladder Consensus Conference Committee. Am J Surg Pathol. 1998;22(12):1435–48.CrossRefPubMedGoogle Scholar
  25. 25.
    Shuang Y, Li C, Zhou X, Huang Y, Zhang L. MicroRNA-195 inhibits growth and invasion of laryngeal carcinoma cells by directly targeting DCUN1D1. Oncol Rep. 2017;38(4):2155–65.  https://doi.org/10.3892/or.2017.5875.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Han Q, Lin X, Zhang X, Jiang G, Zhang Y, Miao Y, et al. WWC3 regulates the Wnt and Hippo pathways via Dishevelled proteins and large tumour suppressor 1, to suppress lung cancer invasion and metastasis. J Pathol. 2017;242(4):435–47.  https://doi.org/10.1002/path.4919.CrossRefPubMedGoogle Scholar
  27. 27.
    Sun X, Zhang L. MicroRNA-143 suppresses oral squamous cell carcinoma cell growth, invasion and glucose metabolism through targeting hexokinase 2. Biosci Rep. 2017;37(3).  https://doi.org/10.1042/bsr20160404.
  28. 28.
    Li W, Yang W, Liu Y, Chen S, Chin S, Qi X, et al. MicroRNA-378 enhances inhibitory effect of curcumin on glioblastoma. Oncotarget. 2017;8(43):73938–46.  https://doi.org/10.18632/oncotarget.17881.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Liu W, Wang S, Zhou S, Yang F, Jiang W, Zhang Q, et al. A systems biology approach to identify microRNAs contributing to cisplatin resistance in human ovarian cancer cells. Mol BioSyst. 2017.  https://doi.org/10.1039/c7mb00362e.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Aschenbrenner DS. Updated review confirms potential risk of bladder cancer with pioglitazone. Am J Nurs. 2017;117(4):25.  https://doi.org/10.1097/01.NAJ.0000515230.35655.54.CrossRefPubMedGoogle Scholar
  31. 31.
    Traboulsi SL, Brimo F, Yang Y, Maedler C, Prevost N, Tanguay S, et al. Pathology review impacts clinical management of patients with T1-T2 bladder cancer. Can Urol Assoc J. 2017;11(6):188–93.  https://doi.org/10.5489/cuaj.4126.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Xie Y, Ma X, Chen L, Li H, Gu L, Gao Y, et al. MicroRNAs with prognostic significance in bladder cancer: a systematic review and meta-analysis. Sci Rep. 2017;7(1):5619.  https://doi.org/10.1038/s41598-017-05801-3.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ye M, Zhang J, Zhang J, Miao Q, Yao L, Zhang J. Curcumin promotes apoptosis by activating the p53-miR-192-5p/215-XIAP pathway in non-small cell lung cancer. Cancer Lett. 2015;357(1):196–205.  https://doi.org/10.1016/j.canlet.2014.11.028.CrossRefPubMedGoogle Scholar
  34. 34.
    Atchison M, Basu A, Zaprazna K, Papasani M. Mechanisms of Yin Yang 1 in oncogenesis: the importance of indirect effects. Crit Rev Oncog. 2011;16(3–4):143–61.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Zheng L, Chen Y, Ye L, Jiao W, Song H, Mei H, et al. miRNA-584-3p inhibits gastric cancer progression by repressing Yin Yang 1-facilitated MMP-14 expression. Sci Rep. 2017;7(1):8967.  https://doi.org/10.1038/s41598-017-09271-5.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Japan Human Cell Society and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.First UrologyCangzhou Central HospitalCangzhouChina

Personalised recommendations