Skip to main content
Log in

Estimators of the Parameters of Beta Distribution

  • Published:
Sankhya B Aims and scope Submit manuscript

Abstract

The iteration algorithm of computation of effective estimators of the shape parameters of beta distributions using the unbiased estimators of the end point parameters of the random variable were obtained and investigated. For the cases when more accurate estimations of the parameters are required, one more step of computation, realized optimization of the obtained estimations, is necessary. The computation results, realized on the basis of the simulation of the appropriate random samples, demonstrate the correctness of the obtained theoretical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AbouRizk, S.M., Halpin, D.W. and Wilson, J.R. (1991). Visual iterative fitting of beta distribution. J. Constr. Eng. Manag.117, 589–605.

    Article  Google Scholar 

  • AbouRizk, S.M., Halpin, D.W. and Wilson, J.R. (1994). Fitting beta distributions based on sample data. J. Constr. Eng. Manag.120, 2, 288–305.

    Article  Google Scholar 

  • Bazaraa, M.S. and Shetty, C.M. (1979). Nonlinear Programming Theory and Algorithms. Wiley, New York.

    MATH  Google Scholar 

  • Boll, R.M., Connell, J.H., Pankanti, S.H., Ratha, N.K. and Senior, A.W. (2004). Guide to Biometrics. Springer, New York.

    Book  Google Scholar 

  • David, H.A. and Nagaraja, H.N. (2003). Order Statistics, 3rd edn. Wiley Series in Probability and Statistics, New York, Inc.

    Book  Google Scholar 

  • Demetrashvili, N. and Van den Heuvel, E.R. (2015). Confidence intervals for intraclass correlation coefficients in a nonlinear dose-response meta-analysis. Biometrics71, (2), 548–555.

    Article  MathSciNet  Google Scholar 

  • Dishon, M. and Weiss, G.H. (1980). Small sample comparison of estimation methods for the beta distribution. J. Stat. Comput. Simul.11, 1–11.

    Article  Google Scholar 

  • Hillier, F.S. and Lieberman, G.J. (1980). Introduction to Operation Research, 3rd edn. Holden-Day, San Francisco.

    MATH  Google Scholar 

  • Jonson, N.L., Kotz, S. and Balakrishnan, N. (2004). Continuous Univariate Distributions, vol. 2, 2nd edn. Wiley, New York.

    Google Scholar 

  • Kachiashvili, K.J. and Prangishvili, A.I. (2016). Verification in biometric systems: problems and modern methods of their solution. J. Appl. Stat., 1–20, https://doi.org/10.1080/02664763.2016.1267122.

    Article  MathSciNet  Google Scholar 

  • Kachiashvili, K.J. and Stepanishvili, V.A. (1988). Estimators of unknown parameters of some non-regularities probability distribution densities. Avtometria2, 109–111.

    Google Scholar 

  • Kachiashvili, K.J. and Topchishvili, A.L. (2016). Estimators of the parameters of irregular Right-Angled triangular distribution. Model. Assist. Stat. Appl.11, 179–184.

    Google Scholar 

  • Pastushko, O.N. and Nevludov, I. (2012). Analysis of quality indicators of biometrical systems of authentication of users. Problems of Telecommunication, 4. http://pt.journal.kh.ua.

  • Primak, A.V., Kafarov, V.V. and Kachiashvili, K.J. (1991). System Analysis of Control and Management of Air and Water Quality. Naukova Dumka, Kiev. (Science and Technical Progress).

Download references

Acknowledgments

We thank the editor and unknown reviewers for their help and attention to our work.

Funding

This research was supported by Shota Rustaveli National Science Foundation of Georgia grant AR/183/4-100/13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kartlos Joseph Kachiashvili.

Appendices

Appendix 1. Formulae for Determination of Direct and Inverse Incomplete Beta-Functions

Let us consider a standard form of the incomplete beta distribution, i.e.,

$$B_{x} (p,q) ={{\int}_{0}^{x}} t^{p-1} \,(1 -t)^{q -1} \,d t \;, $$

B(p,q) = B1(p,q) is a complete beta function and

$$B(p,q) =\frac{{\Gamma}(p)\cdot {\Gamma}(q)}{{\Gamma}(p +q)} \;. $$

Let us introduce denotations:

$$\begin{array}{@{}rcl@{}} &&F_{m} (\lambda) =\prod\limits_{k = 0}^{m-1} (\lambda +k) \;, \quad \chi_{n} (\lambda,\mu,z) =\sum\limits_{k = 0}^{n-1} \frac{F_{k} (\lambda)}{F_{k} (\mu)}\cdot z^{k} \;,\\ &&I_{z} (p,q) =B_{z} (p,q) /B(p,q) \;. \end{array} $$

Then we can represent the beta function in the form of the series

$$B_{z} (\alpha,\beta) =\alpha^{-1} \,z^{\alpha} \cdot {~}_{2} F_{1} (\alpha,\, 1-\beta;\, \alpha + 1;\, z) \;, $$

or

$$B_{z} (\alpha,\beta) =\alpha^{-1} \,\left( \frac{z}{1-z}\right)^{\alpha} \cdot {~}_{2} F_{1} \left( \alpha,\, \alpha +\beta;\, \alpha + 1;\, \frac{z}{1 -z}\right) \;, $$

where

$${~}_{2} F_{1} (\alpha_{1},\, \alpha_{2};\, \gamma;\, z) =\sum\limits_{k = 0}^{\infty} \frac{F_{k} (\alpha_{1}) \,F_{k} (\alpha_{2})}{F_{k} (\gamma)}\cdot \frac{z^{k}}{k!} \qquad (|z|<1) \;. $$

At integer values of the parameters, the following relations are correct

$$\begin{array}{@{}rcl@{}} &&B(n, \alpha) =\frac{(n-1)!}{F_{n} (\alpha)} =\frac{1}{\alpha} \,\prod\limits_{k = 1}^{n-1} \frac{k}{\alpha +k} \;, \\ &&B_{z} (\alpha, n) =B(\alpha,n)\cdot z^{\alpha} \,\chi_{n} (\alpha, 1, 1-z) \;, \\ &&B_{z} (n,\alpha) =B(n,\alpha) -B(n,\alpha)\cdot (1-z)^{\alpha} \,\chi_{n} (\alpha, 1, z) \;. \end{array} $$

In particular,

$$\begin{array}{@{}rcl@{}} &&B(1,\alpha) = 1/\alpha \;, \\ &&I_{z} (\alpha,1) =z^{\alpha} \;,\qquad I_{z} (1,\alpha) = 1 -(1 -z)^{\alpha} \;. \end{array} $$

At half-integer values of the parameters, we have

$$\begin{array}{@{}rcl@{}} &&B(m + 1/2,\, n + 1/2) =\pi \,\frac{F_{m} (1/2) \,F_{n} (1/2)}{(m+n)!} \;, \\ &&I_{z} (m + 1/2,\, n + 1/2) =(2/\pi)\cdot \arcsin \sqrt{z} +(2/\pi) \,\sqrt{z \,(1 -z)}\cdot {\Psi}_{m,n} \;, \end{array} $$

where

$$\begin{array}{@{}rcl@{}} {\Psi}_{m,n} &=&\chi_{n} (1,\, 3/2,\, 1-z) -\frac{n!}{F_{n} (1/2)}\cdot (1-z)^{n} \,\chi_{m} (1 +n,\, 3/2,\, z) \\ &=&-\chi_{m} (1,\, 3/2,\, z) -\frac{m!}{F_{m} (1/2)}\cdot z^{m} \,\chi_{n} (1 +m,\, 3/2,\, 1-z) \;. \end{array} $$

In particular,

$$\begin{array}{@{}rcl@{}} I_{z} (1/2,\, 1/2) &=&(2/\pi)\cdot \arcsin \sqrt{z} =(2/\pi)\cdot \arctan\sqrt{z/(1-z)} \;, \\ B_{z} (1/2,\, 1/2) &=&2\cdot \arcsin \sqrt{z} = 2\cdot \arctan\sqrt{z/(1-z)} \;. \end{array} $$

For computation of the inverse incomplete beta function, let us introduce Q(α,β,ξ), which is the inverse function of Iz(α,β) for given α and β. It satisfies the relation

$$Q(\alpha,\beta,\xi) = 1 -Q(\beta,\alpha,\, 1-\xi) \;. $$

At ξ → 0

$$Q(\alpha,\beta,\xi) \approx \eta +\frac{\beta -1}{\alpha + 1} \,\eta^{2} +... \;, $$

where

$$\eta =\left( \xi \cdot \left( \alpha /B(\alpha,\beta)\right)\right)^{1/\alpha} \;. $$

At ξ → 1

$$Q(\alpha,\beta,\xi) \approx 1 -\eta -\frac{\alpha -1}{\beta + 1} \,\eta^{2} +... \;, $$

where

$$\eta =\left( (1 -\xi)\cdot \left( \beta /B(\alpha,\beta)\right)\right)^{1/\beta} \;. $$

For determination of the inverse incomplete beta function, we used the following iteration method.

Let us consider the equation

$$ I_{x} (p,q) =y \;, $$
(1)

at 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and (1 − p)(1 − q)≠ 0. Let us denote

$$x_{\mu} =(p-1)/(p +q -2) \;. $$

For the solution of (1), the method of Newton’s iteration was used. The initial approximation x0 of the iterative process is to be defined as follows:

  • if p > 1 and q > 1 then x0 = xμ;

  • if p ≤ 1 and q ≥ 1 then x0 = 0;

  • if p ≥ 1 and q ≤ 1 then x0 = 1;

  • if α < 1 and β < 1 and \(I_{x_{\mu }}(p,q) >y\) then x0 = 0;

  • if α < 1 and β < 1 and \(I_{x_{\mu }}(p,q) <y\) then x0 = 1.

It should be noted that the monotonous convergence of the iteratively obtained sequence of the solutions of (1) to the desired value is guaranteed.

Appendix 2. Examples

Examples of the graphs of the divergences between empirical and estimated distribution functions by the samples of different size n for case 11 at a = 12.0, b = 21.0, p = 7.21; q = 1.252 (see Table 6) are represented in Fig. 6.

Figure 6
figure 6

Examples of the graphs of the divergences between empirical and estimated distribution functions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kachiashvili, K.J., Melikdzhanjan, D.I. Estimators of the Parameters of Beta Distribution. Sankhya B 81, 350–373 (2019). https://doi.org/10.1007/s13571-018-0157-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13571-018-0157-2

Keywords and phrases

AMS (2000) subject classification

Navigation