Skip to main content
Log in

A comprehensive analysis of clinical trials including both immunotherapy and radiation therapy

  • Original Research
  • Published:
Journal of Radiation Oncology

Abstract

Purpose

Radiation therapy (RT) may work synergistically with cancer immunotherapies but clinical trial data is needed to validate this paradigm. We isolated the portfolio of trials that investigate the primary immunomodulatory properties of RT and examined recent trends in clinical trials that combine immunotherapy and RT (ITRT).

Methods

We queried clinicaltrials.gov for trials initiated since 2002 using both radiation and immunotherapy as mandated interventions. We designated the trials that examine the specific aspects of RT or its abscopal properties as “Primary RT Immunomodulation” trials. Chi-squared analysis determined differences between primary RT immunomodulation trials and those that incorporate RT as a secondary intervention. Joinpoint regression modeling determined the rate of change of the introduction of new trials over time.

Results

One hundred and ninety trials met inclusion criteria. Targeted immunostimulatory agents, including checkpoint inhibitors, were the most common immunotherapy (n = 79 [41.6%]). Sixty-six (34.7%) trials included RT as the primary intervention, with 50 (75.6%) of these utilizing stereotactic body radiation (SBRT). All ITRT trials increased at a rate of 14.8% per year. Primary RT immunomodulation trials increased at a rate of 26.8% per year. Primary RT immunomodulation trials were more likely to utilize targeted immunostimulatory agents (p < 0.01), and SBRT (p < 0.01), and more likely to involve metastatic sites (p < 0.01). The number of ITRT studies increased drastically in the latest two years of the study.

Conclusion

The number of new ITRT clinical trials is increasing rapidly. This increase in quantity may improve the clinical application of the immunomodulatory properties of RT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Caux C, Massacrier C, Vanbervliet B, Dubois B, Van Kooten C, Durand I, Banchereau J (1994) Activation of human dendritic cells through CD40 cross-linking. J Exp Med 180:1263–1272

    Article  CAS  Google Scholar 

  2. Pan HY, Haffty BG, Falit BP, Buchholz TA, Wilson LD, Hahn SM, Smith BD (2016) Supply and demand for radiation oncology in the United States: updated projections for 2015 to 2025. Int J Radiat Oncol Biol Phys 96:493–500

    Article  Google Scholar 

  3. DuPage M, Mazumdar C, Schmidt LM, Cheung AF, Jacks T (2012) Expression of tumour-specific antigens underlies cancer immunoediting. Nature 482:405–409

    Article  CAS  Google Scholar 

  4. Stamell EF, Wolchok JD, Gnjatic S, Lee NY, Brownell I (2013) The abscopal effect associated with a systemic anti-melanoma immune response. Int J Radiat Oncol Biol Phys 85:293–295

    Article  Google Scholar 

  5. Lai A, Tran A, Nghiemphu PL, Pope WB, Solis OE, Selch M, Fika E, Yong WH, Mischel PS, Liau LM et al (2011) Phase II study of bevacizumab plus temozolomide during and after radiation therapy for patients with newly diagnosed glioblastoma multiforme. J Clin Oncol Off J Am Soc Clin Oncol 29:142–148

    Article  CAS  Google Scholar 

  6. Drake CG, Lipson EJ, Brahmer JR (2014) Breathing new life into immunotherapy: review of melanoma, lung and kidney cancer. Nat Rev Clin Oncol 11:24–37

    Article  CAS  Google Scholar 

  7. Weiner LM, Surana R, Wang S (2010) Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol 10:317–327

    Article  CAS  Google Scholar 

  8. Timmerman JM, Levy R (1999) Dendritic cell vaccines for cancer immunotherapy. Annu Rev Med 50:507–529

    Article  CAS  Google Scholar 

  9. Rosenberg SA (2000) Interleukin-2 and the development of immunotherapy for the treatment of patients with cancer. Cancer J Sci Am 6(Suppl 1):S2–S7

    PubMed  Google Scholar 

  10. La-Beck NM, Jean GW, Huynh C, Alzghari SK, Lowe DB (2015) Immune checkpoint inhibitors: new insights and current place in cancer therapy. Pharmacotherapy 35:963–976

    Article  CAS  Google Scholar 

  11. Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WE, Poddubskaya E, Antonia S, Pluzanski A, Vokes EE, Esther H et al (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373:123–135

    Article  CAS  Google Scholar 

  12. Weber JS, D'Angelo SP, Minor D, Hodi FS, Gutzmer R, Neyns B, Hoeller C, Khushalani NI, Miller WH Jr, Lao CD et al (2015) Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol 16:375–384

    Article  CAS  Google Scholar 

  13. Bonner JA, Harari PM, Giralt J, Cohen RB, Jones CU, Sur RK, Raben D, Baselga J, Spencer SA, Zhu J, Youssoufian H, Rowinsky EK, Ang KK (2010) Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncol 11:21–28

    Article  CAS  Google Scholar 

  14. Bradley JD, Paulus R, Komaki R, Masters G, Blumenschein G, Schild S, Bogart J, Hu C, Forster K, Anthony M et al (2015) Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study. Lancet Oncol 16:187–199

    Article  CAS  Google Scholar 

  15. Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, Antoine FC, Hoang-Xuan K, Kavan P, Cernea D et al (2014) Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 370:709–722

    Article  CAS  Google Scholar 

  16. United States Census Bureau. American housing survey: 2013 detailed tables. Washington (DC): United States Department of Commerce; 2014 Oct 16 [accessed 2014 Oct 21]. http://www.census.gov/newsroom/ress-release/2014/cb12-tps.html

  17. Peters WA 3rd, Liu PY, Barrett RJ 2nd, Stock RJ, Monk BJ, Berek JS, Souhami L, Grigsby P, Gordon W Jr, Alberts DS (2000) Concurrent chemotherapy and pelvic radiation therapy compared with pelvic radiation therapy alone as adjuvant therapy after radical surgery in high-risk early-stage cancer of the cervix. J Clin Oncol Off J Am Soc Clin Oncol 18:1606–1613

    Article  CAS  Google Scholar 

  18. Kim HJ, Fay MP, Feuer EJ, Midthune DN (2000) Permutation tests for joinpoint regression with applications to cancer rates. Stat Med 19(3):335–351

    Article  CAS  Google Scholar 

  19. Grimaldi AM, Simeone E, Giannarelli D, Muto P, Falivene S, Borzillo V, Giugliano FM, Sandomenico F, Petrillo A, Curvietto M et al (2014) Abscopal effects of radiotherapy on advanced melanoma patients who progressed after ipilimumab immunotherapy. Oncoimmunology 3:e28780

    Article  Google Scholar 

  20. Burnette B, Fu YX, Weichselbaum RR (2012) The confluence of radiotherapy and immunotherapy. Front Oncol 2:143

    Article  CAS  Google Scholar 

  21. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723

    Article  CAS  Google Scholar 

  22. Robert C, Thomas L, Bondarenko I, O'Day S, Weber J, Garbe C, Lebbe C, Baurain JF, Testori A, Grobb JJ et al (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364(26):2517–2526

    Article  CAS  Google Scholar 

  23. Deng L, Liang H, Burnette B, Bechett M, Darga T, Weichselbaum R, Fu XY (2014) Irradiation and anti PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest 124(2):687–695

    Article  CAS  Google Scholar 

  24. Liu SZ, Jin SZ, Liu XD, Sun YM (2001) Role of CD28/B7 costimulation and IL-12/IL-10 interaction in the radiation-induced immune changes. BMC Immunol 2:8

    Article  CAS  Google Scholar 

  25. Liang H, Deng L, Chmura S, Burnette B, Liadis N, Darga T, Bechett MA, Lingen MW, Witt M, Weichselbaum et al (2013) Radiation-induced equilibrium is a balance between tumor cell proliferation and T cell-mediated killing. J Immunol 190(11):5874–5881

    Article  CAS  Google Scholar 

  26. Formenti SC, Demaria S (2009) Systemic effects of local radiotherapy. Lancet Oncol 10(7):718–726

    Article  Google Scholar 

  27. Demaria S, Ng B, Devitt ML, Babb JS, Kawashima N, Liebes L, Formenti SC (2004) Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys 58(3):862–870

    Article  Google Scholar 

  28. Rodel F, Frey B, Gaipl U, Keilholz L, Fournier C, Manda K, Schollnberger H, Hildebrandt G, Rodel C (2012) Modulation of inflammatory immune reactions by low-dose ionizing radiation: molecular mechanisms and clinical application. Curr Med Chem 19(12):1741–1750

    Article  CAS  Google Scholar 

  29. Burnette B, Weichselbaum RR (2013) Radiation as an immune modulator. Semin Radiat Oncol 23:273–280

    Article  Google Scholar 

  30. Gameiro SR, Jammeh ML, Wattenberg MM, Tsang KY, Ferrone S, Hodge JW (2014) Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing. Oncotarget 5(2):403–416

    Article  Google Scholar 

  31. Hodge JW, Kwilas A, Ardiani A, Gameiro SR (2013) Attacking malignant cells that survive therapy: exploiting immunogenic modulation. Oncoimmunology 2(12):e26937

    Article  Google Scholar 

  32. Barcellos-Hoff MH, Derynck R, Tsang ML, Weatherbee JA (1994) Transforming growth factor-beta activation in irradiated murine mammary gland. J Clin Invest 93(2):892–899

    Article  CAS  Google Scholar 

  33. Zeng J, See AP, Phallen J, Jackson CM, Belcaid Z, Ruzevick J, Durham N, Meyer C, Harris TJ, Albesiano E, Pradilla G, Ford E, Wong J, Hammers HJ, Mathios D, Tyler B, Brem H, Tran PT, Pardoll D, Drake CG, Lim M (2013) Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys 86(2):343–349

    Article  CAS  Google Scholar 

  34. Kim JY, Son YO, Park SW, Bae JH, Chung JS, KIM HH, Chung BS, Kim SH, Kang CD (2006) Increase of NKG2D ligands and sensitivity to NK cell-mediated cytotoxicity of tumor cells by heat shock and ionizing radiation. Exp Mol Med 38(5):474–484

    Article  CAS  Google Scholar 

  35. Hiniker SM, Chen DS, Reddy S, Chang DT, Jones JC, Mollick JA, Swetter SM, Knox SJ (2012) A systemic complete response of metastatic melanoma to local radiation and immunotherapy. Transl Oncol 5(6):404–407

    Article  Google Scholar 

  36. Weber J (2010) Immune checkpoint proteins: a new therapeutic paradigm for cancer—preclinical background: CTLA-4 and PD-1 blockade. Semin Oncol 37(5):430–439

    Article  CAS  Google Scholar 

  37. Demaria S, Kawashima N, Yang AM, Devitt ML, Babb JS, Kawashima N, Liebes L, Formenti SC (2005) Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer Res Off J Am Assoc Cancer Res 11(2 Pt 1):728–734

    CAS  Google Scholar 

  38. Shimizu J, Yamazaki S, Sakaguchi S (1999) Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 163(10):5211

    CAS  PubMed  Google Scholar 

  39. Bouquet F, Pal A, Pilones KA, Kemaria S, Hann B, Akhurst RJ, Babb JS, Lonning SM, Dewyngaert JK, Formenti SC et al (2011) TGFbeta1 inhibition increases the radiosensitivity of breast cancer cells in vitro and promotes tumor control by radiation in vivo. Clin Cancer Res Off J Am Assoc Cancer Res 17(21):6754–6765

    Article  CAS  Google Scholar 

  40. Sharabi AB, Tran PT, Lim M, Drake CG, Deweese TL (2015) Stereotactic radiation therapy combined with immunotherapy: augmenting the role of radiation in local and systemic treatment. Oncol (Williston Park) 29(5):331–340

    Google Scholar 

  41. Klug F, Prakash H, Huber PE, Seibel T, Bender N, Halama N, Pfirschke C, Voss RH, Timke C, Umansky L et al (2013) Low-dose irradiation programs macrophage differentiation to an iNOS(+)/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell 24(5):589–602

    Article  CAS  Google Scholar 

  42. Miller GM, Kim DW, Andres ML, Green LM, Gridley DS (2003) Changes in the activation and reconstitution of lymphocytes resulting from total-body irradiation correlate with slowed tumor growth. Oncology 65(3):229–241

    Article  Google Scholar 

  43. Lee Y, Auh SL, Wang Y, Burnette B, Wang Y, Meng Y, Beckett M, Sharma R, Chin R, Tu T et al (2009) Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood 114(3):589–595

    Article  CAS  Google Scholar 

  44. Ishihara D, Pop L, Takeshima T, Iyengar P, Hannan R (2017) Rationale and evidence to combine radiation therapy and immunotherapy for cancer treatment. Cancer Immunol Immunother 281–298

    Article  Google Scholar 

  45. Schaue D, Ratikan JA, Iwamoto KS, McBride WH (2012) Maximizing tumor immunity with fractionated radiation. Int J Radiat Oncol Biol Phys 83(4):1306–1310

    Article  CAS  Google Scholar 

  46. Camphausen K, Moses MA, Menard C, Sproull M, Beecken WD, Folkman J, O'Reilly MS (2003) Radiation abscopal antitumor effect is mediated through p53. Cancer Res 63(8):1990–1993

    CAS  PubMed  Google Scholar 

  47. Filatenkov A, Baker J, Mueller AM, Kenkel J, Ahn GO, Dutt S, Zhang N, Kohrt H, Jensen K, Dejbakhsh-Jones S et al (2015) Ablative tumor radiation can change the tumor immune cell microenvironment to induce durable complete remissions. Clin Cancer Res 21:3727–3739

    Article  CAS  Google Scholar 

  48. Dewan MZ, Galloway AE, Kawashima N, Dewyngaert JK, Babb JS, Formenti SC, Demaria S (2009) Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res 15:5379–5388

    Article  CAS  Google Scholar 

  49. Abuodeh Y, Venkat P, Kim S (2016) Systematic review of case reports on the abscopal effect. Curr Probl Cancer 40:25–37

    Article  Google Scholar 

  50. Chen DS, Mellman I (2017) Elements of cancer immunity and the cancer-immune set point. Nature 541:321–330

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shane Lloyd.

Ethics declarations

Funding

Dustin Boothe, Joseph W. Clyde, Michael Christensen, Shiven Patel, and Shane Lloyd declare that they have no funding to disclose.

Conflict of interest statement

Dustin Boothe, Joseph W. Clyde, Michael Christensen, and Shiven Patel declare that they have no conflict of interest. Shane Lloyd received personal fees from Sirtex outside of the submitted work.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study formal consent is not required.

Additional information

Dustin Boothe and Joseph Clyde worked equally on this manuscript and are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boothe, D., Clyde, J.W., Christensen, M. et al. A comprehensive analysis of clinical trials including both immunotherapy and radiation therapy. J Radiat Oncol 7, 223–232 (2018). https://doi.org/10.1007/s13566-018-0351-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13566-018-0351-x

Keywords

Navigation