Potential copper production through 2035 in Chile

Abstract

In the long term, primary and secondary supply of refined copper satisfies demand. Numerous models exist to explain and predict demand and secondary supply; however, the projection of primary supply relies mostly on detailed knowledge of potential mining projects and on existing ore reserves and resources. Much discussion has occurred historically regarding the availability of resources and reserves for the future. Chile, being the largest copper producer, also has the largest reserves in the world; therefore, it retains its potential to be a key player in future supply. This article explores some of the most relevant resource and technological challenges that may emerge with an accelerated development of brownfield and greenfield copper mining projects in Chile through 2035, without considering economic, regulatory, and environmental constraints. A “Full Scenario” was created to accommodate these conditions and restrictions. It includes estimates of future ore reserves, copper production, plant capacity, ore grades, energy and water consumption, greenhouse gas (GHG) emissions, and generation of tailings. Maximum production would exceed 10 million tons of contained copper from 2027 to 2030, with a resulting decrease of ore grades and the growth of energy and water consumption. The growth of indirect GHG emissions through 2035 is estimated at 18.4% less than copper production growth, because all new electric energy for this scenario would be based on renewable energy. Also, all new water used by 38 out of the 42 mining projects considered would be seawater, and some of the continental water used in 2019 would cease to be used in mining.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Notes

  1. 1.

    Only a couple of oxide operations in Chile are based on exotic copper deposits that do not have a sulfide orebody below them: Mina Sur in Chuquicamata district and El Tesoro in Centinela district.

  2. 2.

    This scenario includes conventional renewable energies.

References

  1. Aivazidou E, Tsolakis N, Iakovou E, Vlachos D (2016) The emerging role of water footprint in supply chain management: a critical literature synthesis and a hierarchical decision-making framework. J Clean Prod 137:1018–1037. https://doi.org/10.1016/j.jclepro.2016.07.210

    Article  Google Scholar 

  2. Ali SH, Giurco D, Arndt N, Nickless E, Brown G, Demetriades A, Durrheim R, Enriquez MA, Kinnaird J, Littleboy A, Meinert LD, Oberhänsli R, Salem J, Schodde R, Schneider G, Vidal O, Yakovleva N (2017) Mineral supply for sustainable development requires resource governance. Nature 543:367–372. https://doi.org/10.1038/nature21359

    Article  Google Scholar 

  3. Ayres R, Ayres L, Råde I (2002) The life cycle of copper, its co-products and byproducts. International Institute for Environmental and Development, London, UK. World Business Council for Sustainable Development, Geneva, Switzerland. Report 24

  4. BERR (2008) Digest of United Kingdom energy statistics 2008, Department for Business. Enterprise and Regulatory Reform, United Kingdom

    Google Scholar 

  5. Bleiwas DI (2012) Estimated water requirements for the conventional flotation of copper ores: U.S. Geological Survey Open-File Report 2012–1089, 13 p

  6. CDEC-SIC (2016) Escenarios de Expansion del Parque Generador SIC-SING. Informe desarrollado por Synex Consulting Engineers para la Direccion de Planificacion y Desarrollo del Centro de Despacho Economico de Carga del Sistema Interconectado Central (CDEC-SIC), Junio de 2016

  7. Central Bank (2001) Cuantificacion de los principales recursos minerales de Chile: 1985–2000. Prepared by Central Bank and National Service of Geology and Mining. Santiago, _Chile

  8. Chilean Senate (2018) Bulletin N°11.876–12. Draft law on glacier protection. July 4, 2018

  9. Cobb CW, Douglas PH (1928) A theory of production. Am Econ Rev 18:139–165

    Google Scholar 

  10. Cochilco (2015) Consumo de electricidad en la industria minera del cobre a nivel nacional. Informacion estadistica sobre el consumo de energia en la mineria del cobre al 2014. Comision Chilena del Cobre. Santiago

  11. Cochilco (2016a) Anuario de estadisticas del cobre y otros minerales 1996–2015. Comision Chilena del Cobre, Santiago

    Google Scholar 

  12. Cochilco (2016b) Informe de actualizacion de emisiones GEI directos en la mineria del cobre al año 2015. Comision Chilena del Cobre, Santiago

    Google Scholar 

  13. Cochilco (2016c) Estadisticas Consumo de Energia de la Mineria del Cobre al año 2015. Comision Chilena del Cobre, Santiago

    Google Scholar 

  14. Cochilco (2017a) Anuario de estadisticas del cobre y otros minerales 1997–2016. Comision Chilena del Cobre, Santiago

    Google Scholar 

  15. Cochilco (2017b) Proyeccion del consumo de electricidad en la mineria del cobre 2017–2028. Comision Chilena del Cobre, Santiago

    Google Scholar 

  16. Cochilco (2017c) Proyeccion del consumo de agua en la mineria del cobre 2017–2028. Comision Chilena del Cobre, Santiago

    Google Scholar 

  17. Cochilco (2019a) Proyeccion de la produccion esperada de cobre en Chile 2019–2030. Comision Chilena del Cobre, Santiago

    Google Scholar 

  18. Cochilco (2019b) Inversion en la mineria chilena. Cartera de proyectos 2018-2027. Comision Chilena del Cobre, Santiago

    Google Scholar 

  19. Comision Nacional de Energia (2017) Generacion Bruta. Sistemas: SING 1999–2016, SIC: 1996–2016

  20. Davies M (2011) Filtered dry stacked tailings: the fundamentals. Proceedings Tailings and Mine Waste 2011, Vancouver B.C., (November), November 6 to 9

  21. Downie J, Stubbs W (2013) Evaluation of Australian companies' scope 3 greenhouse gas emissions assessments. J Clean Prod 56:156–163

    Article  Google Scholar 

  22. Elshkaki A, Graedel TE, Ciacci L, Reck B (2016) Copper demand, supply, and associated energy use to 2050. Glob Environ Chang 39:305–315

    Article  Google Scholar 

  23. European Commission (2016) Environmental Footprint Pilot Guidance document, − Guidance for the implementation of the EU Product Environmental Footprint (PEF) during the Environmental Footprint (EF) pilot phase, version 52, February 2016

  24. Fisher FM, Cootner PH, Baily MN (1972) An econometric model of the world copper industry. Bell J Econ Manag Sci 3(2) (Autumn, 1972):568–609

    Article  Google Scholar 

  25. Fu X, Ueland SM, Olivetti E (2017) Econometric modeling of recycled copper supply. Resour Conserv Recycl 122:219–226

    Article  Google Scholar 

  26. Gomez F, Guzman JI, Tilton JE (2007) Copper recycling and scrap availability. Res Policy 32:183–190. https://doi.org/10.1016/j.resourpol.2007.08.002

    Article  Google Scholar 

  27. Gutberlet J (2015) Cooperative urban mining in Brazil: collective practices in selective household waste collection and recycling. Waste Manag 45:22–31

    Article  Google Scholar 

  28. Harmsen JHM, Roes AL, Patel MK (2013) The impact of copper scarcity on the efficiency of 2050 global renewable energy scenarios. Energy 50:62–73

    Article  Google Scholar 

  29. Hernandez D (2009) Chilean copper production, capacity and competitiveness, 8th world copper conference. CRU, March, Santiago

    Google Scholar 

  30. Hondo H (2005) Life cycle GHG emission analysis of power generation systems: Japanese case. Energy 30(2005):2042–2056

    Article  Google Scholar 

  31. IISD (2016) Comprehensive wealth in Canada - measuring what matters in the long run. The International Institute for Sustainable Development. Canada. December 2016

  32. IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories, prepared by the National Greenhouse Gas Inventories Programme, Eggleston HS, Buendia L, Miwa K, Ngara T and Tanabe K (eds.). Published: IGES, Japan

  33. Jeswiet J, Archibald J, Thorley U, De Souza E (2015) Energy use in premanufacture (mining). The 22nd CIRP Conference on Life Cycle Engineering. Procedia CIRP. Volume 29, 2015, Pages 816-821

  34. Klohn Crippen Berger (2017) Study of Tailings Management Technologies. http://mend-nedem.org/wp-content/uploads/2.50.1Tailings_Management_TechnologiesL.pdf). Accessed 8 May 2020

  35. Kuckshinrichs W, Zapp P, Poganietz W-R (2007) CO2 emissions of global metal-industries: the case of copper. Appl Energy 84:842–852

    Article  Google Scholar 

  36. Lagos G, Peters D, Videla A, Jara JJ (2018) The effect of mine aging on the evolution of environmental footprint indicators in the Chilean copper mining industry 2001-2015. J Clean Prod 174:389–400

    Article  Google Scholar 

  37. Mahdi Badiozamania M, Askari-Nasabb H (2014) Integration of reclamation and tailings management in oil sands surface mine planning. Environ Model Softw 51:45–58

    Article  Google Scholar 

  38. Matthews HS, Hendrickson CT, Weber CL (2008) The importance of carbon footprint estimation boundaries. Environ Sci Technol 2008(42):5839–5842

    Article  Google Scholar 

  39. Meadows DL, Meadows DH, Randers J, Behrens W III (1972) The limits to growth, Club of Rome Reports. Universe Books, New York

    Google Scholar 

  40. Missimer TM, Maliva RG (2018) Environmental issues in sea water reverse osmosis desalination: intakes and outfalls. Desalination 434:198–215. https://doi.org/10.1016/j.desal.2017.07.012

    Article  Google Scholar 

  41. Mudd GM, Jowitt SM (2018) Global resource assessments of primary metals: an optimistic reality check. Nat Resour Res 27(2)

  42. Mudd GM, Weng Z, Memary R, Northey SA, Giurco D, Mohr S, Mason L (2012) Future greenhouse gas emissions from copper mining: assessing clean energy scenarios. Prepared for CSIRO Minerals Down Under Flagship by Monash University and Institute for Sustainable Futures, UTS. ISBN 978-1-922173-48-5

  43. Nguyen MT, Vink S, Ziemski M, Barrett DJ (2014) Water and energy synergy and trade-off potentials in mine water management. J Clean Prod 84:629–638

    Article  Google Scholar 

  44. Norgate T, Haque N (2010) Energy and greenhouse gas impacts of mining and mineral processing operations. J Clean Prod 18:266–274

    Article  Google Scholar 

  45. Norgate T, Jahanshahi S (2007) Opportunities for reducing energy consumption and greenhouse gas emissions in mineral processing and metal production. In: Proceedings of Chemeca 2007, Melbourne, pp. 600–611

  46. Norgate T, Jahanshahi S (2011) Reducing the greenhouse gas footprint of primary metal production: where should the focus be? Miner Eng 24:1563–1570

    Article  Google Scholar 

  47. Northey S, Haque N, Mudd GM (2013) Using sustainability reporting to assess the environmental footprint of copper mining. J Clean Prod 40:118–128

    Article  Google Scholar 

  48. Northey S, Mohr S, Mudd GM, Weng Z, Giurco D (2014) Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining. Resour Conserv Recycl 83:190–201

    Article  Google Scholar 

  49. Northey S, Mudd GM, Saarivuori E, Wessman-Jääskeläinen H, Haque N (2016) Water footprinting and mining: where are the limitations and opportunities? J Clean Prod 135:1098–1116. https://doi.org/10.1016/j.jclepro.2016.07.024

    Article  Google Scholar 

  50. Northey S, Mudd GM, Werner TT, Jowitt SM, Haque N, Yellishetty M, Weng Z (2017) The exposure of global base metal resources to water criticality, scarcity and climate change. Glob Environ Chang 44:109–124

    Article  Google Scholar 

  51. Paley Commission (1952) Resources for freedom: a report to the President. United States. U.S. Govt. Print. Off, Washington

    Google Scholar 

  52. Radetzki M, Warrel L (2017) A handbook of primary commodities in the global economy, Second edn. Cambridge Press, Cambridge

    Google Scholar 

  53. Roberts DA, Johnston EL, Knott NA (2010) Impacts of desalination plant discharges on the marine environment: a critical review of published studies. Water Res 44:5117–5128. https://doi.org/10.1016/j.watres.2010.04.036

    Article  Google Scholar 

  54. S&P (2018) World exploration trends. S&P Global Market Intelligence March 2018

  55. Schipper B, Lin H, Meloni M, Wansleeben K, Heijungs R, van der Voet E (2018) Estimating global copper demand until 2100 with regression and stock dynamics. Resour Conserv Recycl 132(28–36):28–36

    Article  Google Scholar 

  56. Schlömer S, Bruckner T, Fulton L, Hertwich E, McKinnon A, Perczyk D, Wiser R (2014) Annex III: technology-specific cost and performance parameters. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Minx JC (eds) Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  57. Schoenberger E (2016) Environmentally sustainable mining: the case of tailings storage facilities. Res Policy 49(2016):119–128

    Article  Google Scholar 

  58. Slade ME (1980) An econometric model of the U.S. secondary copper industry: recycling versus disposal. J Environ Econ Manag 7:123–141

    Article  Google Scholar 

  59. Spuerk S, Drobe M, Lottermoser BG (2017) Evaluating resource efficiency at major copper mines. Miner Eng 107:27–33

    Article  Google Scholar 

  60. Tan S. (1987) An econometric analysis of the world copper market. World Bank, International Economics Department

  61. Tilton JE (2003) On borrowed time? Assessing the threat of mineral depletion. RFF Press

  62. Tilton JE, Crowson PCF, DeYoung JH, Eggert RG, Ericsson M, Guzmán JI, Humphreys D, Lagos G, Maxwell P (2018) Radetzki M (2018) public policy and future mineral supplies. Res Policy 57:55–60. https://doi.org/10.1016/j.resourpol.2018.01.006

    Article  Google Scholar 

  63. UBS Global Research (2017) Global mining strategy. Copper: 2018 disruption risk? Chile election update December 14

  64. Untec (2013) Estudio sobre la proyeccion de emisiones del sector industria y mineria al 2050, y medidas de mitigacion asociadas. Informe Final. Linea Base 2013 y medidas de mitigacion sector mineria e industria. MAPS Chile. Chile

  65. USGS (2017) Mineral commodity summaries: copper. United States Geology Survey

  66. USGS (2018) Mineral commodity summaries: copper. United States Geology Survey

  67. Valencia C (2005) An econometric study of the world copper industry. Ph.D. Dissertation, Colorado School of Mines, Golden, CO.

  68. Valor Minero (2017) Desarrollo futuro de la mineria en la zona central. Diagnostico y recomendaciones para la sostenibilidad de los territorios. Documento Final. Noviembre 2017. Alianza Valor Minero, Santiago

  69. Vial J (1988) An econometric study of the world copper market. Ph.D. Dissertation, University of Pennsylvania, Philadelphia, PA

  70. West J (2011) Decreasing Metal Ore Grades. Are They Really Being Driven by the Depletion of High-Grade Deposits? J Ind Ecol 15(2):165–168

    Article  Google Scholar 

  71. Wood Mackenzie (2015) Global copper smelter supply summary. March

  72. Wood Mackenzie (2017a) Global copper mine supply summary. September

  73. Wood Mackenzie (2017b) Copper Mine Cost Package

  74. Wood Mackenzie (2017c) Global copper long-term outlook Q1 2017. March

  75. Wood Mackenzie (2018) Global copper long-term outlook Q4 2018. December

  76. WRI, WBCSD (2015) GHG Protocol Scope 2 Guidance. An amendment to the GHG Protocol Corporate Standard. World Resources Institute (WRI) and World Business Council on Sustainable Development (WBCSD)

  77. Zegarra L (2016) Duracion de la Evaluacion de los Estudios de Impacto Ambiental de los proyectos Mineros Greenfield en Chile: 1997–2015. Magister thesis, Pontificia Universidad Catolica de Chile

Download references

Acknowledgements

We thank the many people in industry and academia that commented on the potential mining projects that could be constructed in Chile in the period through 2035. We specially thank comments by Diego Hernandez of the National Society for Mining (Sonami), Nelson Pizarro of Codelco (former CEO), Gerhard von Borries of Codelco, Ricardo Alvarez of Mitsui, Juan Carlos Román of Anglo American, Rodrigo Moya of Antofagasta Minerals (AMSA) and Robert Mayne Nichols of Empresa Nacional de Minería (Enami), and Professors Julio Beniscelli, Juan Carlos Salas and Patricio Lillo of the Department of Mining Engineering at the Pontificia Universidad Católica de Chile.

Funding

This research was funded by the Mineral Economics Program of the Pontificia Universidad Católica de Chile.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gustavo Lagos.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 76 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lagos, G., Peters, D., Lima, M. et al. Potential copper production through 2035 in Chile. Miner Econ (2020). https://doi.org/10.1007/s13563-020-00227-2

Download citation

Keywords

  • Copper production
  • Chile
  • Scenario 2035
  • Energy
  • Water
  • GHG