Transcriptome analysis reveals salinity responses in four Tartary buckwheat cultivars

Abstract

Tartary buckwheat (Fagopyrum tataricum) is widely planted in the world because of its high nutritional content and strong salt tolerance. However, high salinity still causes some declines in the crop production. In addition, it is unclear of molecular mechanism imparting salt tolerance on this crop. In order to obtain more detailed information regarding this mechanism, we made transcriptome comparisons between short-term acclimation to salt stress (100 mM of NaCl, 48 h) and control in two existing and two new salt-tolerant cultivars of Tartary buckwheat in this study. In total, 205.2 million clean reads were produced through an illumina sequencing approach. A total of 10,865 unigenes were annotated against all four public databases: Nr, Swiss-Prot, KOG and KEGG. 42 common unigenes in all the four cultivars expressed differentially after 100 mM of NaCl for 48 h, suggesting that these differentially expressed unigenes (DEGs) may be involved in salinity response. In addition, we identified 57 transcription factor families total in this study, whereas eight of 42 DEGs can encode this protein. We also observed certain unigenes were ROS (reactive oxygen species) related, including superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX), which were chosen for validation by quantitative real-time PCR. Taken together, the transcriptome data obtained from distinct cultivars of F. tataricum with different salt tolerance was the first report, which provides a valuable insight into the mechanisms of salt tolerance and offers promising references for cultivating strong salt-tolerant Tartary buckwheat cultivars.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Data availability

Raw reads have been deposited to the NCBI Sequence Read Archive under the accession ID SRP125065: https://www.ncbi.nlm.nih.gov/sra/?term=SRP125065.

Abbreviations

CDS:

Coding sequence

DEG:

Differentially expressed gene

FDR:

False discovery rate

GO:

Gene ontology

MAPK:

Mitogen activated protein kinase

ROS:

Reactive oxygen species

SOS:

Salt overly sensitive

SR:

Salt-related

SRA:

Sequence read archive

TF:

Transcription factor

References

  1. Allan AC, Hellens RP, Laing WA (2008) MYB transcription factors that colour our fruit. Trends Plant Sci 13(3):99–102. https://doi.org/10.1016/j.tplants.2007.11.012

    CAS  Article  PubMed  Google Scholar 

  2. Askira Y, Rubin B, Rabinowitch HD (1991) Differential response to the herbicidal activity of delta-aminolevulinic acid in plants with high and low SOD activity. Free Radic Res Commun 13(1):837–843. https://doi.org/10.3109/10715769109145865

    Article  Google Scholar 

  3. Azooz MM, Ismail AM, Elhamd MFA (2009) Growth, lipid peroxidation and antioxidant enzyme activities as a selection criterion for the salt tolerance of maize cultivars grown under salinity stress. Int J Agric Biol 11:572–577. https://doi.org/10.15439/2014F360

    Article  Google Scholar 

  4. Belver A, Olias R, Huertas R, Rodriguez-Rosales MP (2012) Involvement of SlSOS2 in tomato salt tolerance. Bioengineered 3:298–302. https://doi.org/10.4161/bioe.20796

    Article  PubMed  PubMed Central  Google Scholar 

  5. Butcher K, Wick AF, Desutter T, Chatterjee A, Harmon J (2016) Soil salinity: a threat to global food security. Agron J 108:2189–2200. https://doi.org/10.2134/agronj2016.06.0368

    CAS  Article  Google Scholar 

  6. Büyük İ, Aydın SS, Duman DC, Aras S (2014) Expression analysis of APX and CAT genes in eggplants subjected to Cu+2 and Zn+2 heavy metals. New Biotechnol 31:S138. https://doi.org/10.1016/j.nbt.2014.05.1956

    Article  Google Scholar 

  7. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18):3674–3676. https://doi.org/10.1093/bioinformatics/bti610

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Dai X, Sinharoy S, Udvardi M, Zhao PX (2013) PlantTFcat: an online plant transcription factor and transcriptional regulator categorization and analysis tool. BMC Bioinform 14:321. https://doi.org/10.1186/1471-2105-14-321

    CAS  Article  Google Scholar 

  9. Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K (2007) Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol 143:1739–1751. https://doi.org/10.1016/S0168-8278(08)60689-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573. https://doi.org/10.1016/j.tplants.2010.06.005

    CAS  Article  PubMed  Google Scholar 

  11. Esfandiari E, Gohari G (2017) Response of ROS-scavenging systems to salinity stress in two different wheat (Triticum aestivum L.) cultivars. Not Bot Horti Agrobo 45(1):287–291. https://doi.org/10.15835/nbha45110682

    CAS  Article  Google Scholar 

  12. Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10:366–371. https://doi.org/10.1016/j.pbi.2007.04.020

    CAS  Article  PubMed  Google Scholar 

  13. Fabjan N, Rode J, Košir IJ, Wang Z, Zhang Z, Kreft I (2003) Tartary buckwheat (Fagopyrum tataricum Gaertn.) as a source of dietary rutin and quercitrin. J Agric Food Chem 51:6452–6455. https://doi.org/10.1021/jf034543e

    CAS  Article  PubMed  Google Scholar 

  14. Fang X, Huang K, Nie J, Zhang Y, Yi Z (2019) Genome-wide mining, characterization, and development of microsatellite markers in Tartary buckwheat (Fagopyrum tataricum Garetn.). Euphytica 215:183. https://doi.org/10.1007/s10681-019-2502-6

    CAS  Article  Google Scholar 

  15. Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442. https://doi.org/10.1016/j.pbi.2006.05.014

    Article  PubMed  Google Scholar 

  16. Ganesan G, Sankararamasubramanian HM, Narayanan JM, Sivaprakash KR, Parida A (2008) Transcript level characterization of a cDNA encoding stress regulated NAC transcription factor in the mangrove plant Avicennia marina. Plant Physiol Biochem 46:928–934. https://doi.org/10.1016/j.plaphy.2008.05.002

    CAS  Article  PubMed  Google Scholar 

  17. Gossett DR, Millhollon EP, Lucas MC, Banks SW, Marney MM (1994) The effects of NaCl on antioxidant enzyme activities in callus tissue of salt-tolerant and salt-sensitive cotton cultivars (Gossypium hirsutum L.). Plant Cell Rep 13:498–503. https://doi.org/10.1007/bf00232944

    CAS  Article  PubMed  Google Scholar 

  18. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotechnol 29:644–652. https://doi.org/10.1038/nbt.1883

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Gu J, Huang LX, Gong YJ, Zheng SC, Liu L, Huang LH, Feng QL (2013) De novo characterization of transcriptome and gene expression dynamics inepidermis during the larval-pupal metamorphosis of common cutworm. Insect Biochem Mol Biol 43:794–808. https://doi.org/10.1016/j.ibmb.2013.06.001

    CAS  Article  PubMed  Google Scholar 

  20. Iseli C, Jongeneel CV, Bucher P (1999) ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc Int Conf Intell Syst Mol Biol 99:138–148. https://doi.org/10.1002/9780470999455.ch1

    Article  Google Scholar 

  21. Jaiswal P (2013) Maize metabolic network construction and transcriptome analysis. Plant Genome 6:1–12. https://doi.org/10.3835/plantgenome2012.09.0025

    CAS  Article  Google Scholar 

  22. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30. https://doi.org/10.1093/nar/28.1.27

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Khan SA, Li MZ, Wang SM, Yin HJ (2018) Revisiting the role of plant transcription factors in the battle against abiotic stress. Int J Mol Sci 19(6):1634. https://doi.org/10.3390/ijms19061634

    CAS  Article  PubMed Central  Google Scholar 

  24. Koonin EV, Fedorova ND, Jackson JD et al (2004) A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Boil 5:R7. https://doi.org/10.1186/gb-2004-5-2-r7

    Article  Google Scholar 

  25. Krulwich TA (1983) Na+/H+ antiporters. Biochim Biophys Acta 726:245–264. https://doi.org/10.1016/0304-4173(83)90011-3

    CAS  Article  PubMed  Google Scholar 

  26. Kuimelis RG, Livak KJ, Mullah B, Andrus A (1997) Structural analogues of TaqMan probes for real-time quantitative PCR. Nucleic Acids Symp Ser 37:255–256

    CAS  Google Scholar 

  27. Letey J, Hoffman GJ, Hopmans JW, Grattan SR, Suarez D, Corwin DL, Oster JD, Wu L, Amrhein C (2011) Evaluation of soil salinity leaching requirement guidelines. Agric Water Manag 98:502–506. https://doi.org/10.1016/j.agwat.2010.08.009

    Article  Google Scholar 

  28. Li D, Su Z, Dong J, Wang T (2009a) An expression database for roots of the model legume Medicago truncatula under salt stress. BMC Genomics 10:517. https://doi.org/10.1186/1471-2164-10-517

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J (2009b) SOAP2: An improved ultrafast tool for short read alignment. Bioinformatics 25(15):1966–1967. https://doi.org/10.1093/bioinformatics/btp336

    CAS  Article  PubMed  Google Scholar 

  30. Little JW, Mount DW (1982) The SOS regulatory system of Escherichia coli. Cell 29:11–22. https://doi.org/10.1016/0092-8674(82)90085-X

    CAS  Article  PubMed  Google Scholar 

  31. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    CAS  Article  Google Scholar 

  32. Ma S, Gong Q, Bohnert HJ (2006) Dissecting salt stress pathways. J Exp Bot 57:1097–1107. https://doi.org/10.1093/jxb/erj098

    CAS  Article  PubMed  Google Scholar 

  33. Makinen V, Salmela L, Ylinen J (2012) Normalized N50 assembly metric using gap-restricted co-linear chaining. BMC Bioinform 13(1):255. https://doi.org/10.1186/1471-2105-13-255

    Article  Google Scholar 

  34. Mao X, Cai T, Olyarchuk JG, Wei L (2005) Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21:3787–3793. https://doi.org/10.2307/1592215

    CAS  Article  PubMed  Google Scholar 

  35. Metternicht GI, Zinck JA (2003) Remote sensing of soil salinity: potentials and constraints. Remote Sens Environ 85:1–20. https://doi.org/10.1016/S0034-4257(02)00188-8

    Article  Google Scholar 

  36. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:W182-185. https://doi.org/10.1093/nar/gkm321

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628. https://doi.org/10.1038/nmeth.1226

    CAS  Article  PubMed  Google Scholar 

  38. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59(1):651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Nagalakshmi U, Waern K, Snyder M (2010) RNA-seq: a method for comprehensive transcriptome analysis. Curr Protoc Mol Biol 4:11–13. https://doi.org/10.1002/0471142727.mb0411s89

    Article  PubMed  Google Scholar 

  40. Nakashima K, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95. https://doi.org/10.1104/pp.108.129791

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10:79–87. https://doi.org/10.1016/j.tplants.2004.12.010

    CAS  Article  PubMed  Google Scholar 

  42. Pang CH, Wang BS (2008) Oxidative stress and salt tolerance in plants. Prog Bot 69:231–245. https://doi.org/10.1007/978-3-540-72954-9_9

    CAS  Article  Google Scholar 

  43. Peng FY, Weselake RJ (2013) Genome-wide identification and analysis of the B3 superfamily of transcription factors in Brassicaceae and major crop plants. Theor Appl Genet 126:1305–1319. https://doi.org/10.1007/s00122-013-2054-4

    Article  PubMed  Google Scholar 

  44. Pitman MG, Lauchli A (2002) Global impact of salinity and agricultural ecosystems. Environ Plants Mol 1:3–20. https://doi.org/10.1007/0-306-48155-3_1

    Article  Google Scholar 

  45. Qiao WH, Zhao XY, Li W, Luo Y, Zhang XS (2007) Overexpression of AeNHX1, a root-specific vacuolar Na+/H+ antiporter from Agropyron elongatum, confers salt tolerance to Arabidopsis and Festuca plants. Plant Cell Rep 26:1663–1672. https://doi.org/10.1007/s00299-007-0354-3

    CAS  Article  PubMed  Google Scholar 

  46. Rahman H, Ramanathan V, Nallathambi J, Duraialagaraja S, Muthurajan R (2016) Over-expression of a NAC 67 transcription factor from finger millet (Eleusine coracana L.) confers tolerance against salinity and drought stress in rice. BMC Biotechnol. 16:35. https://doi.org/10.1186/s12896-016-0261-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140. https://doi.org/10.1093/bioinformatics/btp616

    CAS  Article  Google Scholar 

  48. Satou Y, Imai KS, Levine M, Kohara Y, Rokhsar D, Satoh N (2003) A genomewide survey of developmentally relevant genes in Ciona intestinalis - I. Genes for bHLH transcription factors. Dev Genes Evol 213:213–221. https://doi.org/10.1007/S00427-003-0319-7

    CAS  Article  PubMed  Google Scholar 

  49. Shah K, Nahakpam S (2012) Heat exposure alters the expression of SOD, POD, APX and CAT isozymes and mitigates low cadmium toxicity in seedlings of sensitive and tolerant rice cultivars. Plant Physiol Biochem 57(3):106–113. https://doi.org/10.1016/j.plaphy.2012.05.007

    CAS  Article  PubMed  Google Scholar 

  50. Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA 97:6896–6901. https://doi.org/10.1073/pnas.120170197

    CAS  Article  PubMed  Google Scholar 

  51. Song XM, Huang ZN, Duan WK, Ren J, Liu TK, Li Y, Hou XL (2014) Genome-wide analysis of the bHLH transcription factor family in Chinese cabbage (Brassica rapa ssp. pekinensis). BMC Genomics 289:77. https://doi.org/10.1007/s00438-013-0791-3

    CAS  Article  Google Scholar 

  52. Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135(3):1697–1709. https://doi.org/10.1104/pp.104.039909

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Theodoulou FL (2000) Plant ABC transporters. BBA-Biomembranes 1465(1–2):79–103. https://doi.org/10.1016/S0005-2736(00)00132-2

    CAS  Article  PubMed  Google Scholar 

  54. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-seq. Bioinformatics 25:1105–1111. https://doi.org/10.1093/bioinformatics/btp120

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Ullah A, Dutta D, Fliegel L (2016) Expression and characterization of the SOS1 Arabidopsis salt tolerance protein. Mol Cell Biochem 415:133–143. https://doi.org/10.1007/s11010-016-2685-2

    CAS  Article  PubMed  Google Scholar 

  56. van de Graaf SFJ, Hoenderop JGJ, Bindels RJM (2006) Regulation of TRPV5 and TRPV6 by associated proteins. AM J Physiol Renal Physiol 290:F1295–F1302. https://doi.org/10.1152/ajprenal.00443.2005

    CAS  Article  PubMed  Google Scholar 

  57. Wang Z, Gerstein M, Snyder M (2009) RNA-seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63. https://doi.org/10.1038/nrg2484

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Weinl S, Kudla J (2009) The CBL-CIPK Ca2+-decoding signaling network: function and perspectives. New Phytol 184:517–528. https://doi.org/10.1111/j.1469-8137.2009.02938.x

    CAS  Article  PubMed  Google Scholar 

  59. Wu Q, Bai X, Zhao W, Xiang D, Wan Y, Yan J, Zou L, Zhao G (2017) De novo assembly and analysis of Tartary buckwheat (Fagopyrum tataricum Gaertn.) transcriptome discloses key regulators involved in salt-stress response. Genes 8(10):255. https://doi.org/10.3390/genes8100255

    CAS  Article  PubMed Central  Google Scholar 

  60. Ye CY, Zhang HC, Chen JH, Xia XL, Yin WL (2009) Molecular characterization of putative vacuolar NHX-type Na+/H+ exchanger genes from the salt-resistant tree Populus euphratica. Physiol Plantarum 137(2):166–174. https://doi.org/10.1111/j.1399-3054.2009.01269.x

    CAS  Article  Google Scholar 

  61. Ye J, Fang L, Zheng H et al (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293-297. https://doi.org/10.1093/nar/gkl031

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-Seq: accounting for selection bias. Genome Biol 11:R14. https://doi.org/10.1186/gb-2010-11-2-r14

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Zhang C, Wang D, Yang C, Kong N, Zheng S, Peng Z, Nan Y, Nie T, Wang R, Ma H (2017) Genome-wide identification of the potato WRKY transcription factor family. PLoS ONE 12:e0181573. https://doi.org/10.1371/journal.pone.0181573

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Zhang X, Ju HW, Chung MS, Huang P, Ahn SJ, Kim CS (2011) The R-R-type MYB-like transcription factor, AtMYBL, is involved in promoting leaf senescence and modulates an abiotic stress response in Arabidopsis. Plant Cell Physiol 52:138–148. https://doi.org/10.1093/pcp/pcq180

    CAS  Article  PubMed  Google Scholar 

  65. Zhou J, Li F, Wang JL, Ma Y, Chong K, Xu YY (2009) Basic helix-loop-helix transcription factor (OrbHLH2) from wild rice enhances Arabidopsis tolerance to salt stress and osmotic stress. J Plant Physiol 166:1296–1306. https://doi.org/10.1016/j.jplph.2009.02.007

    CAS  Article  PubMed  Google Scholar 

  66. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273. https://doi.org/10.1146/annurev.arplant.53.091401.143329

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the National Natural Science Foundation of China (31371552), and acknowledge Dr. Mark Ziemann of Deakin University in Australia for language editing.

Author information

Affiliations

Authors

Contributions

J-NS analyzed the relative expression level of genes and drafted the manuscript. X-HL analyzed the transcriptome data of Tartary buckwheat. Y-QW cultivated the plant and treated. H-BY designed the study and helped draft the manuscript.

Corresponding author

Correspondence to Hong-Bing Yang.

Ethics declarations

Conflict of interest

There is no conflict exists among all the authors, and the contribution of the authors is clear and unquestionable. All of them declare that they have no conflict of interest. Therefore, all authors are allowed to publish the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, JN., Liu, XH., Wang, YQ. et al. Transcriptome analysis reveals salinity responses in four Tartary buckwheat cultivars. J. Plant Biochem. Biotechnol. (2021). https://doi.org/10.1007/s13562-021-00648-2

Download citation

Keywords

  • Tartary buckwheat
  • Transcriptome data
  • Differential expression genes
  • Salt tolerance