Skip to main content
Log in

The maize brevis plant1 is a type II inositol polyphosphate 5-phosphatase

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The genes associated with the dwarf phenotype have been utilized in crop breeding to prevent lodging and stem breakage. Brevis plant1 (Bv1), encoding a putative inositol polyphosphate 5-phosphatase (5PTase), has been associated with stem elongation in maize (Zea mays L.); however, the enzymatic activity of BV1 has not been experimentally characterized. In this study, the phosphatase activity of BV1 was verified with biochemical assays. BV1 demonstrated type II 5PTase activity capable of hydrolyzing both inositol polyphosphates and phosphoinositides. Similar to other type II 5PTases that share similar sequences and common domain architecture with BV1, the enzymatic activity of BV1 is sensitive to changes in Mg2+ and pH. 367G-R and 565S-L are two mutations in Bv1 that have been associated with the dwarfing phenotype in maize. To characterize the dwarfing mechanism, mutant BV1 proteins were expressed in vitro and assayed for phosphatase activity. The results showed that both mutations significantly reduced the enzymatic activity of BV1, but neither altered its substrate specificity and dependence on Mg2+ and pH. This biochemical verification of BV1 as a type II 5PTase is important as it sheds light on the molecular basis of deficient BV1-mediated dwarfing phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Bv1 :

Brevis plant1

5PTase:

Inositol polyphosphate 5-phosphatase

ZZ:

Protein-A immunoglobulin G (IgG) binding domains

TEV:

Tobacco etch virus

PCR:

Polymerase chain reaction

qPCR:

Quantitative polymerase chain reaction

RT:

Reverse transcription

β-Tub :

Tubulin beta

BLAST:

Basic Local Alignment Search Tool

References

  • Avila LM, Cerrudo D, Swanton C, Lukens L (2016) Brevis plant1, a putative inositol polyphosphate 5-phosphatase, is required for internode elongation in maize. J Exp Bot 67:1577–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrero Farfan ID, Bergsma BR, Johal G, Tuinstra MR (2012) A stable dw3 allele in sorghum and a molecular marker to facilitate selection. Crop Sci 52:2063–2069

    Article  Google Scholar 

  • Dalrymple DG (1986) Development and spread of high-yielding rice varieties in developing countries

  • Hargrove TR, Cabanilla VL (1979) The impact of semi-dwarf varieties on Asian rice-breeding programs. Bioscience 29:731–735

    Article  Google Scholar 

  • Jarvis DL (2009) Baculovirus-insect cell expression systems. Methods Enzymol 463:191–222

    Article  CAS  PubMed  Google Scholar 

  • Khush GS (1999) Green revolution: preparing for the 21st century. Genome 42:646–655

    Article  CAS  PubMed  Google Scholar 

  • Khush GS (2001) Green revolution: the way forward. Nat Rev Genet 2:815–822

    Article  CAS  PubMed  Google Scholar 

  • Knoller AS, Blakeslee JJ, Richards EL, Peer WA, Murphy AS (2010) Brachytic2/ZmABCB1 functions in IAA export from intercalary meristems. J Exp Bot 61:3689–3696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kodama T, Fukui K, Kometani K (1986) The initial phosphate burst in ATP hydrolysis by myosin and subfragment-1 as studied by a modified mala-chite green method for determination of inorganic phosphate. J Biochem 99:1465–1472

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  Google Scholar 

  • Lin WH, Wang Y, Mueller-Roeber B, Brearley CA, Xu ZH, Xue HW (2005) At5PTase13 modulates cotyledon vein development through regulating auxin homeostasis. Plant Physiol 139:1677–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majerus PW, Kisseleva MV, Norris FA (1999) The role of phosphatases in inositol signaling reactions. J Biol Chem 274:10669–10672

    Article  CAS  PubMed  Google Scholar 

  • Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y (2002) Positional cloning of rice semidwarfing gene, sd-1: rice ‘green revolution gene’ encodes a mutant enzyme involved in gibberellin synthesis. DNA Res 9:11–17

    Article  CAS  PubMed  Google Scholar 

  • Moore KJ, Moser LE, Vogel KP, Waller SS, Johnson BE, Pedersen JF (1991) Describing and quantifying growth stages of perennial forage grasses. Agron J 83:1073–1077

    Article  Google Scholar 

  • Olszewski N, Sun TP, Gubler F (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14:S61–S80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261

    Article  CAS  PubMed  Google Scholar 

  • Perera IY, Hung CY, Brady S, Muday GK, Boss WF (2006) A universal role for inositol 1,4,5-trisphosphate-mediated signaling in plant gravitropism. Plant Physiol 140:746–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002) Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416:701–702

    Article  CAS  PubMed  Google Scholar 

  • Sato-Izawa K, Nakaba S, Tamura K, Yamagishi Y, Nakano Y, Nishikubo N, Kawai S, Kajita S, Ashikari M, Funada R, Katayama Y, Kitano H (2012) DWARF50 (D50), a rice (Oryza sativa L.) gene encoding inositol polyphosphate 5-phosphatase, is required for proper development of intercalary meristem. Plant Cell Environ 35:2031–2044

    Article  CAS  PubMed  Google Scholar 

  • Sauter M, Kende H (1992) Gibberellin-induced growth and regulation of the cell division cycle in deepwater rice. Planta 188:362–368

    Article  CAS  PubMed  Google Scholar 

  • Smith TF, Gaitatzes C, Saxena K, Neer EJ (1999) The WD repeat: a common architecture for diverse functions. Trends Biochem Sci 24:181–185

    Article  CAS  PubMed  Google Scholar 

  • Spielmeyer W, Ellis MH, Chandler PM (2002) Semidwarf (sd-1), ‘green revolution’ rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA 99:9043–9048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai A, Carstens RP (2006) An optimized protocol for protein purification in cultured mammalian cells using a tandem affinity purification approach. Nat Protoc 1:2820–2827

    Article  CAS  PubMed  Google Scholar 

  • Whisstock JC, Wiradjaja F, Waters JE, Gurung R (2002) The structure and function of catalytic domains within inositol polyphosphate 5-phosphatases. IUBMB Life 53:15–23

    Article  CAS  PubMed  Google Scholar 

  • Zhong R, Ye ZH (2004) Molecular and biochemical characterization of three WD-repeat-domain-containing inositol polyphosphate 5-phosphatases in Arabidopsis thaliana. Plant Cell Physiol 45:1720–1728

    Article  CAS  PubMed  Google Scholar 

  • Zhong R, Burk DH, Morrison WH III, Ye ZH (2004) FRAGILE FIBER3, an Arabidopsis gene encoding a type II inositol polyphosphate 5-phosphatase, is required for secondary wall synthesis and actin organization in fiber cells. Plant Cell 16:3242–3259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, pp 97–166

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuiyuan Hao.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Cai, Q. & Hao, S. The maize brevis plant1 is a type II inositol polyphosphate 5-phosphatase. J. Plant Biochem. Biotechnol. 27, 215–222 (2018). https://doi.org/10.1007/s13562-017-0433-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-017-0433-7

Keywords

Navigation