Biology of B. sorokiniana (syn. Cochliobolus sativus) in genomics era

  • Pushpendra K. GuptaEmail author
  • Neeraj K. Vasistha
  • Rashmi Aggarwal
  • Arun K. Joshi
Review Article


Bipolaris sorokiniana (Sacc.) Shoemaker is a hemi-biotrophic fungal pathogen, which is an anamorph (teleomorph Cochlibolus sativus). It causes spot blotch, root rot and leaf spot diseases in a number of cereals including wheat, barley and other small grain cereals. In the genomics era, the fungus has been subjected to a variety of studies using molecular approaches. Correct chromosome number was determined and molecular karyotypes were prepared using contour-clamped homogeneous electric field. Molecular maps were prepared using markers like RFLPs, SSRs, RAPDs and SNPs. For this purpose, segregating progenies derived from crosses between diverse isolates of the pathogen were used. Whole genome sequencing (WGS) data was collected not only for B. sorokiniana isolates, but also for several species of Cochliobolus. Genes involved in secondary metabolism and virulence were identified from genome sequences. The WGS data has also been utilized for comparative genomics giving useful information about evolutionary trends. A brief account of this information is presented in this review.


Spot blotch Bipolaris sorokiniana Karyotypes NRPSs VHv1 Genomics 



Spot blotch


Common root rot


Internal transcribed spacer


PAMP-triggered immunity


Effector-triggered immunity


Effector triggered susceptibility


Non-ribosomal peptide synthetases


Polyketide synthases


Next generation sequencing


Nucleotide-binding site leucine-rich repeat


Serine/threonine protein kinase


Necrotrophic effector


Contour-clamped homogeneous electric field


Germ tube burst method


Amplified fragment length polymorphism


Host-selective toxin




Nuclear localization signals


Small secreted protein


Expressed sequence tag


Simple sequence repeat


Quantitative real-time polymerase chain reaction



PKG was awarded a Senior Scientist position by Indian National Science Academy (INSA), during the tenure of which this study was undertaken. Thanks are due to Head, Department of Genetics and Plant Breeding, CCS University, Meerut for providing facilities and to the Department of Science and Technology, Government of India for the award of a Young Scientist Project to NKV, which facilitated this study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Acharya K, Dutta AK, Pradhan P (2011) Bipolaris sorokiniana (Sacc.) Shoem: the most destructive wheat fungal pathogen in the warmer areas. Aust J Crop Sci 5:1064–1071Google Scholar
  2. Aggarwal R, Das S, Jahani M, Singh DV (2008) Histopathology of spot blotch [Bipolaris sorokiniana (teleomorph: Cochliobolus sativus)] infection in wheat. Acta Phytopathol 43:23–30CrossRefGoogle Scholar
  3. Aggarwal R, Singh VB, Gurjar MS, Gupta S, Srinivas P (2009) Intraspecific variations in Indian isolates of Bipolaris sorokiniana infecting wheat, based on morphological, pathogenic and molecular characters. Indian Phytopathol 64:449–460Google Scholar
  4. Aggarwal R, Singh VB, Shukla R, Gurjar MS, Gupta S, Sharma TR (2010) URP-based DNA fingerprinting of Bipolaris sorokiniana isolates causing spot blotch of wheat. J Phytopathol 158:210–216CrossRefGoogle Scholar
  5. Aggarwal R, Gupta S, Banerjee S, Singh VB (2011) Development of a SCAR marker for detection of Bipolaris sorokiniana causing spot blotch of wheat. Can J Microbiol 57:934–942CrossRefPubMedGoogle Scholar
  6. Ahmed YL, Gerke J, Park HS, Bayram Ö, Neumann P et al (2013) The velvet family of fungal regulators contains a DNA-binding domain structurally similar to NF-κB. PLoS Biol 11(12):e1001750. doi: 10.1371/journal.pbio.1001750 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Ahn JH, Walton JD (1996) Chromosomal organization of TOX2, a complex locus controlling host-selective toxin biosysnthesis in Cochliobolus carbonum. Plant Cell 8:887–897CrossRefPubMedPubMedCentralGoogle Scholar
  8. Apoga D, Åkesson H, Jansson HB, Odham G (2002) Relationship between production of the phytotoxin prehelminthosporol and virulence in isolates of the plant pathogenic fungus Bipolaris sorokiniana. Eur J Plant Pathol 108:519–526CrossRefGoogle Scholar
  9. Arabi MIE, Jawhar M (2003) Pathotypes of Cochliobolus sativus (spot blotch) on barley in Syria. J Plant Pathol 85:193–196Google Scholar
  10. Arabi MIE, Jawhar M (2004) Identification of Cochliobolus sativus (spot blotch) isolates expressing differential virulence on barley genotypes in Syria. J Phytopathol 152:461–464CrossRefGoogle Scholar
  11. Arie T, Christiansen SK, Yoder OC, Turgeon BG (1997) Efficient cloning of ascomycete mating type genes by PCR amplification of the conserved MAT HMG box. Fungal Genet Biol 21:118–130CrossRefPubMedGoogle Scholar
  12. Burdon JJ, Silk J (1997) Sources and patterns of diversity in plant-pathogenic fungi. Phytopathology 87:664–669CrossRefPubMedGoogle Scholar
  13. Carlson H, Nilsson P, Jansson HB, Odham G (1991) Characterization and determination of prehelminthosporol, a toxin from the plant pathogenic fungus Bipolaris sorokiniana, using liquid chromatography/mass spectrometry. J Microbiol Methods 13:259–269CrossRefGoogle Scholar
  14. Chae E, Tran DTN, Weigel D (2016) Cooperation and conflict in the plant immune system. PLoS Pathog 12(3):e1005452. doi: 10.1371/journal.ppat.1005452 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chand R, Pandey SP, Singh HV, Kumar S, Joshi AK (2003) Variability and its probable cause in natural populations of spot blotch pathogen Bipolaris sorokiniana of wheat (T. aestivum L.) in India. J Plant Dis Prot 110:27–35Google Scholar
  16. Chand R, Shah K, Kumar M, Singh VK (2013) Direct submission.
  17. Chand R, Kumar M, Kushwaha C, Shah K, Joshi AK (2014) Role of melanin in release of extracellular enzymes and selection of aggressive isolates of Bipolaris sorokiniana in barley. Curr Microbiol 69:202–211CrossRefPubMedGoogle Scholar
  18. Condon BJ, Leng Y, Wu D, Bushley KE, Ohm RA et al (2013) Comparative genome structure, secondary metabolite, and effector coding capacity across Cochliobolus pathogens. PLoS Genet 9(1):e1003233. doi: 10.1371/journal.pgen.1003233 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Condon BJ, Wu D, Kraševec N, Horwitz BA, Turgeon BG (2014) Comparative genomics of Cochliobolus phytopathogens. In: Lichens DR, Kole C (eds) Genomics of plant-associated fungi: monocot pathogens. Springer, New York, pp 41–67Google Scholar
  20. Dehne HW, Oerke EC (1985) Investigations on the occurrence of Cochliobolus sativus on barley and wheat, vol 2. Infection, colonization, and damage to stem and leaves. J Plant Dis Prot 92:606–617Google Scholar
  21. Duveiller E, Gilchrist LI (1994) Production constraints due to Bipolaris sorokiniana in wheat: Current situation and future prospects. In: Saunder DA, Hettel GP (eds) Wheat in heat-stressed environments: irrigated, dry areas and rice–wheat farming systems. CIMMYT, Mexico, pp 343–352Google Scholar
  22. Duveiller E, Kandel YR, Sharma RC, Shrestha SM (2005) Epidemiology of foliar blights (spot blotch and tan spot) of wheat in the plains bordering the Himalayas. Phytopathology 95:248–256CrossRefPubMedGoogle Scholar
  23. Faris JD, Zhang Z, Lu HJ, Lu SW, Reddy L et al (2010) A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proc Natl Acad Sci USA 107:13544–13549CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fetch TG, Steffenson BJ (1994) Identification of Cochliobolus sativus isolates expressing differential virulence on two-row barley genotypes from North Dakota. Can J Plant Pathol 16:202–206CrossRefGoogle Scholar
  25. Flor HH (1955) Host-parasite interaction in flax rust—its genetics and other implications. Phytopathology 45:680–685Google Scholar
  26. Ghazvini H, Tekauz A (2007) Virulence diversity in the population of Bipolaris sorokiniana. Plant Dis 91:814–821CrossRefGoogle Scholar
  27. Ghazvini H, Tekauz A (2012) Molecular diversity in the barley pathogen Bipolaris sorokiniana (Cochliobolus sativus). Aust Plant Pathol 41:283–293CrossRefGoogle Scholar
  28. Glass NL, Jacobson DJ, Shiu PKT (2000) The genetics of hyphal fusion and vegetative incompatibility in filamentous ascomycete fungi. Ann Rev Genet 34:165–186CrossRefPubMedGoogle Scholar
  29. Goodwin SB, Ben M’Barek S, Dhillon B, Wittenberg AHJ, Crane CF et al (2011) Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis. PLoS Genet 7(6):e1002070. doi: 10.1371/journal.pgen.1002070 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Gurung S, Mahto BN, Gyawali S, Adhikari TB (2013) Phenotypic and molecular diversity of Cochliobolus sativus populations from wheat. Plant Dis 97:62–73CrossRefGoogle Scholar
  31. Gyawali S (2010) Association mapping of resistance to common root rot and spot blotch in barley, and population genetics of Cochliobolus sativus. Ph.D. thesis. North Dakota State University, USAGoogle Scholar
  32. Hane JK, Rouxel T, Howlett BJ, Kema GH, Goodwin SB et al (2011) A novel mode of chromosomal evolution peculiar to filamentous Ascomycete fungi. Genome Biol 12:R45. doi: 10.1186/gb-2011-12-5-r45 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hetzler J, Eyal Z, Mehta YR, Fehrmann H, Kvshnir U et al (1991) Interactions between spot blotch (Cochliobolus sativus) and wheat cultivars. In: Saunders DA (ed) Wheats for the nontraditional warm areas. CIMMYT, Mexico, pp 146–164Google Scholar
  34. Horne M (2015) Inter-relationships between Bipolaris sorokiniana isolates involved in spot blotch, common root rot and black point in winter cereals. Ph.D. thesis. University of Southern Queensland, AustraliaGoogle Scholar
  35. Hosford RM, Solangi GRM, Kiesling RL (1975) Inheritance in Cochliobolus sativus. Phytopathology 65:699–703CrossRefGoogle Scholar
  36. Hrushovetz SB (1956) Cytological studies of ascus development in Cochliobolus sativus. Can J Bot 34:641–651CrossRefGoogle Scholar
  37. Huang HC, Tinline RD (1974) Somatic mitosis in haploid and diploid strains of Cochliobolus sativus. Can J Bot 52:1561–1568CrossRefGoogle Scholar
  38. Index Fungorum (2017) Index fungorum partnership. web accessed via GBIF
  39. Jahani M, Aggarwal R, Dureja P, Srivastava KD (2006) Toxin production by Bipolaris sorokiniana and its role in determining resistance in wheat genotypes. Indian Phytopathol 59:340–344Google Scholar
  40. Jahani M, Aggarwal R, Gupta S, Sharma S, Dureja P (2014) Purification and characterization of a novel toxin from Bipolaris sorokiniana, causing spot blotch of wheat and analysis of variability in the pathogen. Cereal Res Commun 42:252–261CrossRefGoogle Scholar
  41. Jansson HB, Akesson H (2003) Extracellura matrix, esterase and phytoalexin prehelimithosporol in infection of barley leaves by Bipolaris sorokiniana. Eur J Plant Pathol 109:509–605CrossRefGoogle Scholar
  42. Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329CrossRefPubMedGoogle Scholar
  43. Kang HW, Park DS, Park YJ, You CH, Lee BM et al (2002) Fingerprinting of diverse genomes using PCR with universal rice primers generated from repetitive sequence of Korean weedy rice. Mol Cells 13:281–287PubMedGoogle Scholar
  44. Kline DM, Nelson RR (1971) The inheritance factors in Cochliobolus sativus conditioning lesion induction on gramineous hosts. Phytopathology 61:1052–1054CrossRefGoogle Scholar
  45. Knight NL, Platz GJ, Lehmensiek A, Sutherland MW (2010) An investigation of genetic variation among Australian isolates of Bipolaris sorokiniana from different cereal tissues and comparison of their abilities to cause spot blotch on barley. Aust Plant Pathol 39:207–216CrossRefGoogle Scholar
  46. Kumar J, Patrick S, Huckelhoven R, Greger L, Baltruschat H et al (2002) Bipolaris sorokiniana, a cereal pathogen of global concern: cytological and molecular approaches towards better control. Mol Plant Pathol 3:185–195CrossRefPubMedGoogle Scholar
  47. Levitin MM, Petova AN, Atanasenko OS (1985) Comparative study of Bipolaris sorokiniana (Sacc.) Shoem. populations based on virulence symptoms. Mikol Fitopatol 19:154–158Google Scholar
  48. Limpert E, Müller K (1994) Designation of pathotypes of plant pathogens. J Phytopathol 140:346–358CrossRefGoogle Scholar
  49. Liu Z, Friesen TL, Ling H, Meinhardt SW, Oliver RP et al (2006) The Tsn1–ToxA interaction in the wheat–Stagonospora nodorum pathosystem parallels that of the wheat–tan spot system. Genome 49:1265–1273CrossRefPubMedGoogle Scholar
  50. Lu S, Platz GJ, Edwards MC, Friesen TL (2010) Mating type locus-specific polymerase chain reaction markers for differentiation of Pyrenophora teres f. teres and P. teres f. maculata, the causal agents of barley net blotch. Phytopathology 100:1298–1306CrossRefPubMedGoogle Scholar
  51. Manamgoda DS, Cai L, McKenzie EHC, Crous PW, Madrid H et al (2012) A phylogenetic and taxonomic re-evaluation of the BipolarisCochliobolusCurvularia complex. Fungal Divers 56:131–144CrossRefGoogle Scholar
  52. Manamgoda DS, Rossman AY, Castlebury LA, Crous PW, Madrid H et al (2014) The genus Bipolaris. Stud Mycol 79:221–288CrossRefPubMedPubMedCentralGoogle Scholar
  53. Mann MB, Spadari CC, Feltrin T, Frazzon APG, Germani JC et al (2014) Genetic variability of Bipolaris sorokiniana isolates using URP-PCR. Trop Plant Pathol 39:163–171CrossRefGoogle Scholar
  54. Maraite H, Di Zinno T, Longree H, Daumerie V, Duveiller E (1998) Fungi association with foliar blight of wheat in warm areas. In: Duveiller E, Dubin HJ, Reeves J, McNab A (eds) Helminthosporium blight of wheat: spot blotch and tan spot. CIMMYT, Mexico, pp 293–300Google Scholar
  55. McDonald MC, Ahren D, Simpfendorfer S, Milgate A, Solomon PS (2017) The discovery of the virulence gene ToxA in the wheat and barley pathogen Bipolaris sorokiniana. Mol Plant Pathol. doi: 10.1111/mpp.12535 Google Scholar
  56. Mehta YR (1981) Identification of races of Helminthosporium sativum of wheat in Brazil. Pesqui Agropecu Bras 16:331–336Google Scholar
  57. Meldrum SI, Platz GJ, Ogle HJ (2004) Pathotypes of Cochliobolus sativus on barley in Australia. Aust Plant Pathol 33:109–114CrossRefGoogle Scholar
  58. Nakajima H, Isomi K, Ichinoe THM (1994) Sorokinianin: a novel phytotoxin produced by the phytopathogenic fungus Bipolaris sorokiniana. Tetra Lett 35:9597–9600CrossRefGoogle Scholar
  59. Ohm RA, Feau N, Henrissat B, Schoch CL, Horwitz BA et al (2012) Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen Dothideomycetes fungi. PLoS Pathog 8(12):e1003037. doi: 10.1371/journal.ppat.1003037 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Olbe M, Sommarin M, Gustafsson M, Lundborg T (1995) Effect of the fungal pathogen Bipolaris sorokiniana toxin prehelminthosporol on barley root plasma membrane vesicles. Plant Pathol 44:625–635CrossRefGoogle Scholar
  61. Reis EM, Forcelini CA (1993) Transmissao de Bipolar sorokiniana de sementes para orgaos radiculares e aereos do trigo. Fitopatol Bras 18:76–81Google Scholar
  62. Rossman AY, Manamgoda DS, Hyde KD (2013) Proposal to conserve the name Bipolaris against Cochliobolus (Ascomycota: Pleosporales: Pleosporaceae). Taxon 62:1331–1332CrossRefGoogle Scholar
  63. Rouxel T, Grandaubert J, Hane JK, Hoede C, van de Wouw AP et al (2011) Effector diversification within compartments of the Leptosphaeria maculans genome affected by repeat-induced point mutations. Nat Commun 2:202. doi: 10.1038/ncomms1189 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Sahu R, Sharaff M, Pradhan M et al (2016) Elucidation of defense-related signaling responses to spot blotch infection in bread wheat (Triticum aestivum L.). Plant J 86:35–49CrossRefPubMedGoogle Scholar
  65. Shoemaker A (1959) Nomenclature of Dreehslera and Bipolaris, grass parasites segregated from ‘Helminthosporium’. Can J Bot 37:879–887CrossRefGoogle Scholar
  66. Singh K (2016) Cross infectivity and comparative genomics of Bipolaris sorokiniana and Bipolaris oryzae for characterization of pathogenicity related genes in wheat and rice. Ph.D. thesis. Indian Agricultural Research Institute, IndiaGoogle Scholar
  67. Sivanesan A (1987) Graminicolous species of Bipolaris, Curvularia, Drechslera, Exserohilum and their teleomorphs. Mycol Pap 158:1–261Google Scholar
  68. Stakman EC, Stewart DM, Loegering WQ (1962) Identification of physiologic races of Puccinia graminis var. tritici. United States Department of Agriculture-Agricultural Research Service E617. United States Government Printing Office, WashingtonGoogle Scholar
  69. Subramanian CV (1971) Bipolaris Sheomaker. Hyphomycetes: an account of indian species, except Cercosporae. Indian Council of Agriculture Research, New DelhiGoogle Scholar
  70. Tan KC, Ferguson-Hunt M, Rybak K, Waters OD, Stanley WA et al (2012) Quantitative variation in effector activity of ToxA isoforms from Stagonospora nodorum and Pyrenophora tritici-repentis. Mol Plant Microbe Interact 25:515–522CrossRefPubMedGoogle Scholar
  71. Tinline RD (1951) Studies on the perfect stage of Helminthosporium sativum. Can J Bot 29:467–478CrossRefGoogle Scholar
  72. Tinline RD (1962) Cochliobolus sativus: V. heterokaryosis and parasexuality. Can J Bot 40:425–437CrossRefGoogle Scholar
  73. Tsuchiya D, Taga M (2001) Cytological karyotyping of three Cochliobolus spp. by the germ tube burst method. Phytopathology 91:354–360CrossRefPubMedGoogle Scholar
  74. Turgeon BG, Bohlmann H, Ciuffetti LM, Christiansen KS, Yang G et al (1993) Cloning and analysis of the mating type genes from Cochliobolus heterostrophus. Mol Gen Genet 238:270–284PubMedGoogle Scholar
  75. Tzeng TH, Lyngholm LK, Ford CF, Bronson CR (1992) A restriction fragment length polymorphism map and electrophoretic karyotype of the fungal maize pathogen Cochliobolus heterostrophus. Genetics 130:81–96PubMedPubMedCentralGoogle Scholar
  76. Valjavec-Gratian M, Steffenson BJ (1997a) Genetics of virulence in Cochliobolus sativus and resistance in barley. Phytopathology 87:1140–1143CrossRefPubMedGoogle Scholar
  77. Valjavec-Gratian M, Steffenson BJ (1997b) Pathotypes of Cochliobolus sativus on barley. Plant Dis 81:1275–1278CrossRefGoogle Scholar
  78. Wang M, Sun ZH, Chen YC, Liu HX, Li HH et al (2016a) Cytotoxic cochlioquinone derivatives from the endophytic fungus Bipolaris sorokiniana derived from Pogostemon cablin. Fitoterapia. doi: 10.1016/j.fitote.2016.02.005 Google Scholar
  79. Wang R, Leng Y, Shrestha S, Zhong S (2016b) Coordinated and independent functions of velvet-complex genes in fungal development and virulence of the fungal cereal pathogen Cochliobolus sativus. Fungal Biol 120:948–960CrossRefPubMedGoogle Scholar
  80. Zhong S, Steffenson BJ (2001a) Genetic and molecular characterization of mating type genes in Cochliobolus sativus. Mycologia 93:852–863CrossRefGoogle Scholar
  81. Zhong S, Steffenson BJ (2001b) Virulence and molecular diversity in Cochliobolus sativus. Phytopathology 91:469–476CrossRefPubMedGoogle Scholar
  82. Zhong S, Steffenson BJ (2002) Identification and characterization of DNA markers associated with a locus conferring virulence on barley in the plant pathogenic fungus Cochliobolus sativus. Theor Appl Genet 104:1049–1054CrossRefPubMedGoogle Scholar
  83. Zhong S, Steffenson BJ (2007) Molecular karyotyping and chromosome length Polymorphism in Cochliobolus sativus. Mycol Res 111:78–86CrossRefPubMedGoogle Scholar
  84. Zhong S, Steffenson BJ, Martinez JP, Ciuffetti LM (2002) A molecular genetic map and electrophoretic karyotype of the plant pathogenic fungus Cochliobolus sativus. Mol Plant Microbe Interact 15:481–492CrossRefPubMedGoogle Scholar

Copyright information

© Society for Plant Biochemistry and Biotechnology 2017

Authors and Affiliations

  • Pushpendra K. Gupta
    • 1
    Email author
  • Neeraj K. Vasistha
    • 1
  • Rashmi Aggarwal
    • 2
  • Arun K. Joshi
    • 3
  1. 1.Molecular Biology Laboratory, Department of Genetics and Plant BreedingCh. Charan Singh UniversityMeerutIndia
  2. 2.Division of Plant PathologyICAR-Indian Agricultural Research InstituteNew DelhiIndia
  3. 3.The International Maize and Wheat Improvement Center (CIMMYT)New DelhiIndia

Personalised recommendations