Advertisement

Cloning and molecular characterization of a ferulate-5-hydroxylase gene from water chestnuts (Trapa bicornis Osbeck.)

  • Fulin Zhang
  • Fangqin Wang
  • Dahui Li
Original Article
  • 117 Downloads

Abstract

Ferulate 5-hydroxylase (F5H), a cytochrome P450 monooxygenase, has been indicated to function in the monolignol biosynthesis of sinapyl alcohol, namely the precursor of syringyl lignin during phenylpropanoid metabolism. In the present study, a full-length cDNA clone encoding F5H, designated as TbF5H1, was cloned from water chestnuts (Trapa bicornis Osbeck.) using RT-PCR and RACE. Sequence analysis of TbF5H1 protein revealed the presence of highly conserved motifs shard by P450 s, such as heme binding cysteine, oxygen binding I-helix, and E-R-R triade. Subsequently, TbF5H1 was expressed in bacterial system as a recombinant protein, which was used to ascertain kinetic parameters of the protein with the Km and Vmax values of 2.40 μM and 3.35 pkat mg−1, respectively. Together with high identity with other plant F5Hs based amino acid sequences, this result suggested that TbF5H1 had a biological function similar to its homologues in S lignin synthesis. Western blotting analysis using anti-TbF5H1 serum towards total proteins extracted from roots, stems, leaves, and flowers, detected a protein with a molecular weight of about 57 kDa. Quantitative real-time PCR analysis revealed the transcript level of TbF5H1 was higher in leaves than in other tested tissues. Interestingly, TbF5H1 was differentially expressed in response to various stresses, including salt (NaCl), hydrogen peroxide (H2O2) and heavy metal (lead), as well as elicitation by methyl ester jasmonate (MeJA). The expression of TbF5H1 was not significantly altered under NaCl or lead stress conditions, whereas a significant increase in TbF5H1 expression was detected after elicitation of H2O2 and MeJA, respectively. Moreover, there existed a fine coordination between expression of TbF5H1 and contents of certain nonenzymatic antioxidants. These results indicated that integrated with some redox components, TbF5H1 gene should contribute to the acclimation of T. bicornis to oxidative stress, which is modulated by MeJA.

Keywords

Ferulate-5-hydroxylase Gene expression Hydrogen peroxide Trapa bicornis 

Notes

Acknowledgements

This study was supported by the grants from the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China (No. 2015-1098), the Key University Science Research Project of Anhui Province, China (No. KJ2016A225), the Provincial Quality Engineer Fund of Anhui Education Department (No. 2015GXK015), and the Subject-Talents Program of Anhui Agricultural University (No. 2014XKPY-43).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

13562_2017_422_MOESM1_ESM.doc (2.3 mb)
Supplementary material 1 (DOC 2373 kb)
13562_2017_422_MOESM2_ESM.doc (291 kb)
Supplementary material 2 (DOC 291 kb)
13562_2017_422_MOESM3_ESM.doc (39 kb)
Supplementary material 3 (DOC 39 kb)
13562_2017_422_MOESM4_ESM.doc (106 kb)
Supplementary material 4 (DOC 106 kb)
13562_2017_422_MOESM5_ESM.doc (278 kb)
Supplementary material 5 (DOC 278 kb)

References

  1. Bak S, Tax FE, Feldmann KA, Galbraith DW, Feyereisen R (2001) CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis. Plant Cell 13:101–111. doi: 10.1105/tpc.13.1.101 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546. doi: 10.1146/annurev.arplant.54.031902.134938 CrossRefPubMedGoogle Scholar
  3. Chapple CCS, Vogt T, Ellis BE, Somerville CR (1992) An Arabidopsis mutant defective in the general phenylpropanoid pathway. Plant Cell 4:1413–1424. doi: 10.1105/tpc.4.11.1413 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Dueholm B, Krieger C, Drew D, Olry A, Kamo T, Taboureau O, Weitzel C, Bourgaud F, Hehn A, Simonsen HT (2015) Evolution of substrate recognition sites (SRSs) in cytochromes P450 from Apiaceae exemplified by the CYP71AJ subfamily. BMC Evol Biol 15:122. doi: 10.1186/s12862-015-0396-z CrossRefPubMedPubMedCentralGoogle Scholar
  5. Fonseca S, Chico JM, Solano R (2009) The jasmonate pathway: the ligand, the receptor and the core signalling module. Curr Opin Plant Biol 12:539–547. doi: 10.1016/j.pbi.2009.07.013 CrossRefPubMedGoogle Scholar
  6. Franke R, McMichael CM, Meyer K, Shirley AM, Cusumano JC, Chapple C (2000) Modified lignin in tobacco and poplar plants over-expressing the Arabidopsis gene encoding ferulate 5-hydroxylase. Plant J 22:223–234. doi: 10.1046/j.1365-313x.2000.00727.x CrossRefPubMedGoogle Scholar
  7. Gechev T, Gadjev I, Van Breusegem F, Inze D, Dukiandjiev S, Toneva V, Minkov I (2002) Hydrogen peroxide protects tobacco from oxidative stress by inducing a set of antioxidant enzymes. Cell Mol Life Sci 59:708–714. doi: 10.1007/s00018-002-8459-x CrossRefPubMedGoogle Scholar
  8. Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal stressed plants a little easier. Funct Plant Biol 32:481–494. doi: 10.1071/FP05016 CrossRefGoogle Scholar
  9. Gronwald JW, Fuerst EP, Eberlein CV, Egli MA (1987) Effect of herbicide antidotes on glutathione content and glutathione S-transferase activity of sorghum shoots. Pestic Biochem Physiol 29:66–76. doi: 10.1016/0048-3575(87)90085-X CrossRefGoogle Scholar
  10. Hasemann CA, Kurumbail RG, Boddupalli SS, Peterson JA, Deisenhofer J (1995) Structure and function of cytochromes P450: a comparative analysis of thee crystal structures. Structure 3:41–62. doi: 10.1016/S0969-2126(01)00134-4 CrossRefPubMedGoogle Scholar
  11. Humphreys JM, Chapple C (2002) Rewriting the lignin roadmap. Curr Opin Plant Biol 5:224–229. doi: 10.1016/S1369-5266(02)00257-1 CrossRefPubMedGoogle Scholar
  12. Humphreys JM, Hemm MR, Chapple C (1999) New routes for lignin biosynthesis defined by biochemical characterization of recombinant ferulate 5-hydroxylase, a multifunctional cytochrome P450-dependent monooxygenase. Proc Natl Acad Sci USA 96:10045–10050. doi: 10.1073/pnas.96.18.10045 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Kim JH, Yang DH, Kim JS, Baek MH, Park YM, Wi SG, Cho JY, Chung BY (2006) Cloning, characterization, and expression of two cDNA clones for a rice ferulate-5-hydroxylase gene, a cytochrome P450-dependent monooxygenase. J Plant Biol 49:200–204. doi: 10.1007/BF03030533 CrossRefGoogle Scholar
  14. Li DH (2009) Effects of lead polluted water on activities of superoxide dismutase, peroxidase and ultrastructure in leaves of Trapa bicornis seedlings. China Environ Sci 29:136–141Google Scholar
  15. Li DH, Li JZ (2009) Antifungal activity of a recombinant defensin CADEF1 produced by Escherichia coli. World J Microbiol Biotech 25:1911–1918. doi: 10.1007/s11274-009-0089-0 CrossRefGoogle Scholar
  16. Li DH, Yuan Y (2016) Hydrogen peroxide enhances antioxidative defense in the leaves of water caltrop (Trapa bicornis) seedlings treated with lead. Biologia 71:100–108. doi: 10.1515/biolog-2016-0002 Google Scholar
  17. Li XL, Fan XR, Chu HJ, Li W, Chen YY (2017) Genetic delimitation and population structure of three Trapa taxa from the Yangtze River, China. Aquat Bot 136:61–70. doi: 10.1016/j.aquabot.2016.09.009 CrossRefGoogle Scholar
  18. Marita JM, Ralph J, Hatfield RD, Chapple C (1999) NMR characterization of lignins in Arabidopsis altered in the activity of ferulate 5-hydroxylase. Proc Natl Acad Sci USA 96:12328–12332. doi: 10.1073/pnas.96.22.12328 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Meyer K, Cusumano JC, Somerville C, Chapple CCS (1996) Ferulate-5-hydroxylase from Arabidopsis thaliana defines a new family of cytochrome P450-dependent monooxygenases. Proc Natl Acad Sci USA 93:6869–6874. doi: 10.1073/pnas.93.14.6869 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Meyer K, Shirley AM, Cusumano JC, Bell-Lelong DA, Chapple C (1998) Lignin monomer composition is determined by the expression of a cytochrome P450-dependent monooxygenase in Arabidopsis. Proc Natl Acad Sci USA 95:6619–6623. doi: 10.1073/pnas.95.12.6619 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Moskova I, Todorova D, Alexieva V, Ivanov S, Sergiev I (2009) Effect of exogenous hydrogen peroxide on enzymatic and nonenzymatic antioxidants in leaves of young pea plants treated with paraquat. Plant Growth Regul 57:193–202. doi: 10.1007/s10725-008-9336-x CrossRefGoogle Scholar
  22. Neill SJ, Desikan R, Hancock JT (2002) Hydrogen peroxide signalling. Curr Opin Plant Biol 5:388–395. doi: 10.1016/S1369-5266(02)00282-0 CrossRefPubMedGoogle Scholar
  23. Nelson DR, Werck-Reichhart D (2011) A P450 centric view of plant evolution. Plant J 66:194–211. doi: 10.1111/j.1365-313X.2011.04529.x CrossRefPubMedGoogle Scholar
  24. Overkamp S, Hein F, Barz W (2000) Cloning and characterization of eight cytochrome P450 cDNAs from chickpea (Cicer arietinum L.) cell suspension cultures. Plant Sci 155:101–108. doi: 10.1016/S0168-9452(00)00214-4 CrossRefPubMedGoogle Scholar
  25. Paquette SM, Jensen K, Bark S (2009) A web-based resource for the Arabidopsis P450, cytochromes b5, NADPH-cytochrome P450 reductases and family 1 glycosyltransferases (http://www.P450.kvl.dk). Phytochemistry 70:1940–1947. doi: 10.1016/j.phytochem.2009.08.024 CrossRefPubMedGoogle Scholar
  26. Quan LJ, Zhang B, Shi WW, Li HY (2008) Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J Integr Plant Biol 50:2–18. doi: 10.1111/j.1744-7909.2007.00599.x CrossRefPubMedGoogle Scholar
  27. Ruegger M, Meyer K, Cusumano JC, Chapple C (1999) Regulation of ferulate-5-hydroxylase expression in Arabidopsis in the context of sinapate ester biosynthesis. Plant Physiol 119:101–110. doi: 10.1104/pp.119.1.101 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. doi: 10.1093/oxfordjournals.molbev.a040454 PubMedGoogle Scholar
  29. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. Cold Spring Harbor, New YorkGoogle Scholar
  30. Sibout R, Baucher M, Gatineau M, Van Doorsselaere J, Mila I, Pollet B, Maba B, Pilate G, Lapieffe C, Boerjan W (2002) Expression of a poplar cDNA encoding a ferulate-5-hydroxylase/coniferaldehyde 5-hydroxylase increases S lignin deposition in Arabidopsis thaliana. Plant Physiol Biochem 40:1087–1096. doi: 10.1016/S0981-9428(02)01474-2 CrossRefGoogle Scholar
  31. Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645–655. doi: 10.1016/S0168-9452(03)00022-0 CrossRefGoogle Scholar
  32. Werck-Reichhart D, Feyereisen R (2000) Cytochromes P450: a success story. Genome Biol 1:reviews3003.1–3003.9. doi: 10.1186/gb-2000-1-6-reviews3003 CrossRefGoogle Scholar
  33. Yabuta Y, Mieda T, Rapolu M, Nakamura A, Motoki T, Maruta T, Yashimura K, Ishikawa T, Shigeoka S (2007) Light regulation of ascorbate biosynthesis is dependent on the photosynthetic electron transport chain but independent of sugars in Arabidopsis. J Exp Bot 58:2661–2671. doi: 10.1093/jxb/erm124 CrossRefPubMedGoogle Scholar
  34. Yu CW, Murphy T, Lin CH (2003) Hydrogen peroxide induced chilling tolerance in mung bean mediated through ABA-independent glutathione accumulation. Funct Plant Biol 30:955–963. doi: 10.1071/FP03091 CrossRefGoogle Scholar

Copyright information

© Society for Plant Biochemistry and Biotechnology 2017

Authors and Affiliations

  1. 1.School of Life SciencesAnhui Agricultural UniversityHefeiChina

Personalised recommendations