Advertisement

Médecine Intensive Réanimation

, Volume 26, Issue 6, pp 481–504 | Cite as

Insuffisance rénale aiguë en périopératoire et en réanimation (à l’exclusion des techniques d’épuration extrarénale)

  • RFE commune SFAR—SRLF
  • Société française d’anesthésie et de réanimation
  • Société de réanimation de langue française
  • sociétés GFRUP, SFN
  • Groupe francophone de réanimation et urgences pédiatriques
  • Société française de néphrologie
  • C. Ichai
  • Christophe Vinsonneau
  • B. Souweine
  • E. Canet
  • C. Clec’h
  • J.-M. Constantin
  • M. Darmon
  • J. Duranteau
  • T. Gaillot
  • A. Garnier
  • L. Jacob
  • O. Joannes-Boyau
  • L. Juillard
  • D. Journois
  • A. Lautrette
  • L. Müller
  • M. Legrand
  • N. Lerolle
  • T. Rimmelé
  • E. Rondeau
  • F. Tamion
  • L. Velly
Recommandations / Recommendations

Acute kidney injury in the perioperative period and in ICU (except for the extra-renal removal therapies)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    The Kidney Disease Improving Gloval Outcomes (KDIGO) Working Group, (2012) KDIGO clinical practice guideline for acute kidney injury. Kidney International Suppl 2: 1–138Google Scholar
  2. 2.
    Hoste EA, Damen J, Vanholder RC, Lameire NH, Delanghe JR, Van den Hauwe K, Colardyn FA, (2005) Assessment of renal function in recently admitted critically ill patients with normal serum creatinine. Nephrol Dial Transplant 20: 747–753PubMedCrossRefGoogle Scholar
  3. 3.
    Kellum JA, Lameire N, KDIGO AKI Guideline Work Group, (2013) Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Crit Care 17: 204PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P; Acute Dialysis Quality Initiative workgroup. Acute renal failure — definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 8: R204–212Google Scholar
  5. 5.
    Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, Levin A, Acute Kidney Injury N, (2007) Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 11: R31PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Uchino S, Bellomo R, Goldsmith D, Bates S, Ronco C, (2006) An assessment of the RIFLE criteria for acute renal failure in hospitalized patients. Crit Care Med 34: 1913–1917PubMedCrossRefGoogle Scholar
  7. 7.
    Hoste EA, Clermont G, Kersten A, Venkataraman R, Angus DC, De Bacquer D, Kellum JA, (2006) RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: a cohort analysis. Crit Care 10: R73PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Bagshaw SM, George C, Dinu I, Bellomo R, (2008) A multi-centre evaluation of the RIFLE criteria for early acute kidney injury in critically ill patients. Nephrol Dial Transplant 23: 1203–1210PubMedCrossRefGoogle Scholar
  9. 9.
    Joannidis M, Metnitz B, Bauer P, Schusterschitz N, Moreno R, Druml W, Metnitz PG, (2009) Acute kidney injury in critically ill patients classified by AKIN versus RIFLE using the SAPS 3 database. Intensive Care Med 35: 1692–1702PubMedCrossRefGoogle Scholar
  10. 10.
    Coca SG, Singanamala S, Parikh CR, (2012) Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int 81: 442–448PubMedCrossRefGoogle Scholar
  11. 11.
    Akcan-Arikan A, Zappitelli M, Loftis LL, Washburn KK, Jefferson LS, Goldstein SL, (2007) Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int 71: 1028–1035PubMedCrossRefGoogle Scholar
  12. 12.
    Schwartz GJ, Brion LP, Spitzer A, (1987) The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents. Pediatr Clin North Am 34: 571–590PubMedCrossRefGoogle Scholar
  13. 13.
    Plotz FB, Bouma AB, van Wijk JA, Kneyber MC, Bokenkamp A, (2008) Pediatric acute kidney injury in the ICU: an independent evaluation of pRIFLE criteria. Intensive Care Med 34: 1713–1717PubMedCrossRefGoogle Scholar
  14. 14.
    Bonventre JV, Yang L, (2011) Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest 121: 4210–4221PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Bellomo R, Kellum JA, Ronco C, (2012) Acute kidney injury. Lancet 380: 756–766PubMedCrossRefGoogle Scholar
  16. 16.
    Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW, (2005) Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol 16: 3365–3370PubMedCrossRefGoogle Scholar
  17. 17.
    Wald R, Quinn RR, Luo J, Li P, Scales DC, Mamdani MM, Ray JG; University of Toronto Acute Kidney Injury Research G, (2009) Chronic dialysis and death among survivors of acute kidney injury requiring dialysis. JAMA 302: 1179–1185PubMedCrossRefGoogle Scholar
  18. 18.
    Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo E, Gibney N, Tolwani A, Ronco C; Beginning, Ending Supportive Therapy for the Kidney, (2005) Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 294: 813–818PubMedCrossRefGoogle Scholar
  19. 19.
    Waikar SS, Liu KD, Chertow GM, (2008) Diagnosis, epidemiology and outcomes of acute kidney injury. Clin J Am Soc Nephrol 3: 844–861PubMedCrossRefGoogle Scholar
  20. 20.
    Nisula S, Kaukonen KM, Vaara ST, Korhonen AM, Poukkanen M, Karlsson S, Haapio M, Inkinen O, Parviainen I, Suojaranta-Ylinen R, Laurila JJ, Tenhunen J, Reinikainen M, Ala-Kokko T, Ruokonen E, Kuitunen A, Pettila V; Group FS, (2013) Incidence, risk factors and 90-day mortality of patients with acute kidney injury in Finnish intensive care units: the FINNAKI study. Intensive Care Med 39: 420–428PubMedCrossRefGoogle Scholar
  21. 21.
    Vaara ST, Pettila V, Reinikainen M, Kaukonen KM, patients with acute kidney injury in Finnish intensive care units: the FINNAKI study, (2012) Population-based incidence, mortality and quality of life in critically ill patients treated with renal replacement therapy: a nationwide retrospective cohort study in Finnish intensive care units. Crit Care 16: R13PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Endre ZH, Pickering JW, Walker RJ, (2011) Clearance and beyond: the complementary roles of GFR measurement and injury biomarkers in acute kidney injury (AKI). Am J Physiol Renal Physiol 301: F697–707PubMedCrossRefGoogle Scholar
  23. 23.
    Murray PT, Mehta RL, Shaw A, Ronco C, Endre Z, Kellum JA, Chawla LS, Cruz D, Ince C, Okusa MD; Workgroup A, (2014) Potential use of biomarkers in acute kidney injury: report and summary of recommendations from the 10th Acute Dialysis Quality Initiative consensus conference. Kidney Int 85: 513–521PubMedCrossRefGoogle Scholar
  24. 24.
    Bihorac A, Kellum JA, (2015) Acute kidney injury in 2014: a step towards understanding mechanisms of renal repair. Nat Rev Nephrol 11: 74–75PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Cruz DN, Mehta RL, (2014) Acute kidney injury in 2013: breaking barriers for biomarkers in AKI-progress at last. Nat Rev Nephrol 10: 74–76PubMedCrossRefGoogle Scholar
  26. 26.
    Parikh CR, Devarajan P, (2008) New biomarkers of acute kidney injury. Crit Care Med 36: S159–165PubMedCrossRefGoogle Scholar
  27. 27.
    Zhang Z, Lu B, Sheng X, Jin N, (2011) Cystatin C in prediction of acute kidney injury: a systemic review and meta-analysis. Am J Kidney Dis 58: 356–365PubMedCrossRefGoogle Scholar
  28. 28.
    Liu Y, Guo W, Zhang J, Xu C, Yu S, Mao Z, Wu J, Ye C, Mei C, Dai B, (2013) Urinary interleukin 18 for detection of acute kidney injury: a meta-analysis. Am J Kidney Dis 62: 1058–1067PubMedCrossRefGoogle Scholar
  29. 29.
    Shao X, Tian L, Xu W, Zhang Z, Wang C, Qi C, Ni Z, Mou S, (2014) Diagnostic value of urinary kidney injury molecule 1 for acute kidney injury: a meta-analysis. PLoS One 9: e84131CrossRefGoogle Scholar
  30. 30.
    Haase M, Bellomo R, Devarajan P, Schlattmann P, Haase-Fielitz A; Group NM-aI, (2009) Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis 54: 1012–1024PubMedCrossRefGoogle Scholar
  31. 31.
    Haase M, Devarajan P, Haase-Fielitz A, Bellomo R, Cruz DN, Wagener G, Krawczeski CD, Koyner JL, Murray P, Zappitelli M, Goldstein SL, Makris K, Ronco C, Martensson J, Martling CR, Venge P, Siew E, Ware LB, Ikizler TA, Mertens PR, (2011) The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies. J Am Coll Cardiol 57: 1752–1761PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Kashani K, Al-Khafaji A, Ardiles T, Artigas A, Bagshaw SM, Bell M, Bihorac A, Birkhahn R, Cely CM, Chawla LS, Davison DL, Feldkamp T, Forni LG, Gong MN, Gunnerson KJ, Haase M, Hackett J, Honore PM, Hoste EA, Joannes-Boyau O, Joannidis M, Kim P, Koyner JL, Laskowitz DT, Lissauer ME, Marx G, McCullough PA, Mullaney S, Ostermann M, Rimmele T, Shapiro NI, Shaw AD, Shi J, Sprague AM, Vincent JL, Vinsonneau C, Wagner L, Walker MG, Wilkerson RG, Zacharowski K, Kellum JA, (2013) Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care 17: R25PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Bihorac A, Chawla LS, Shaw AD, Al-Khafaji A, Davison DL, Demuth GE, Fitzgerald R, Gong MN, Graham DD, Gunnerson K, Heung M, Jortani S, Kleerup E, Koyner JL, Krell K, Letourneau J, Lissauer M, Miner J, Nguyen HB, Ortega LM, Self WH, Sellman R, Shi J, Straseski J, Szalados JE, Wilber ST, Walker MG, Wilson J, Wunderink R, Zimmerman J, Kellum JA, (2014) Validation of cell-cycle arrest biomarkers for acute kidney injury using clinical adjudication. Am J Respir Crit Care Med 189: 932–939PubMedCrossRefGoogle Scholar
  34. 34.
    McIlroy DR, Wagener G, Lee HT, (2010) Biomarkers of acute kidney injury: an evolving domain. Anesthesiology 112: 998–1004PubMedCrossRefGoogle Scholar
  35. 35.
    Goldstein SL, (2012) Acute kidney injury in children and its potential consequences in adulthood. Blood Purif 33: 131–137PubMedCrossRefGoogle Scholar
  36. 36.
    Schiffl H, Lang SM, (2013) Urinary biomarkers and acute kidney injury in children: the long road to clinical application. Pediatr Nephrol 28: 837–842PubMedCrossRefGoogle Scholar
  37. 37.
    Ataei N, Bazargani B, Ameli S, Madani A, Javadilarijani F, Moghtaderi M, Abbasi A, Shams S, Ataei F, (2014) Early detection of acute kidney injury by serum cystatin C in critically ill children. Pediatr Nephrol 29: 133–138PubMedCrossRefGoogle Scholar
  38. 38.
    Schnell D, Darmon M, (2012) Renal Doppler to assess renal perfusion in the critically ill: a reappraisal. Intensive Care Med 38: 1751–1760PubMedCrossRefGoogle Scholar
  39. 39.
    Duranteau J, Deruddre S, Vigue B, Chemla D, (2008) Doppler monitoring of renal hemodynamics: why the best is yet to come. Intensive Care Med 34: 1360–1361PubMedCrossRefGoogle Scholar
  40. 40.
    Wan L, Yang N, Hiew CY, Schelleman A, Johnson L, May C, Bellomo R, (2008) An assessment of the accuracy of renal blood flow estimation by Doppler ultrasound. Intensive Care Med 34: 1503–1510PubMedCrossRefGoogle Scholar
  41. 41.
    Lauschke A, Teichgraber UK, Frei U, Eckardt KU, (2006) “Low-dose” dopamine worsens renal perfusion in patients with acute renal failure. Kidney Int 69: 1669–1674PubMedCrossRefGoogle Scholar
  42. 42.
    Deruddre S, Cheisson G, Mazoit JX, Vicaut E, Benhamou D, Duranteau J, (2007) Renal arterial resistance in septic shock: effects of increasing mean arterial pressure with norepinephrine on the renal resistive index assessed with Doppler ultrasonography. Intensive Care Med 33: 1557–1562PubMedCrossRefGoogle Scholar
  43. 43.
    Schnell D, Camous L, Guyomarc’h S, Duranteau J, Canet E, Gery P, Dumenil AS, Zeni F, Azoulay E, Darmon M, (2013) Renal perfusion assessment by renal Doppler during fluid challenge in sepsis. Crit Care Med 41: 1214–1220PubMedCrossRefGoogle Scholar
  44. 44.
    Lerolle N, Guerot E, Faisy C, Bornstain C, Diehl JL, Fagon JY, (2006) Renal failure in septic shock: predictive value of Doppler-based renal arterial resistive index. Intensive Care Med 32: 1553–1559PubMedCrossRefGoogle Scholar
  45. 45.
    Platt JF, Rubin JM, Ellis JH, (1991) Acute renal failure: possible role of duplex Doppler US in distinction between acute prerenal failure and acute tubular necrosis. Radiology 179: 419–423PubMedCrossRefGoogle Scholar
  46. 46.
    Izumi M, Sugiura T, Nakamura H, Nagatoya K, Imai E, Hori M, (2000) Differential diagnosis of prerenal azotemia from acute tubular necrosis and prediction of recovery by Doppler ultrasound. Am J Kidney Dis 35: 713–719PubMedCrossRefGoogle Scholar
  47. 47.
    Stevens PE, Gwyther SJ, Hanson ME, Boultbee JE, Kox WJ, Phillips ME, (1990) Noninvasive monitoring of renal blood flow characteristics during acute renal failure in man. Intensive Care Med 16: 153–158PubMedCrossRefGoogle Scholar
  48. 48.
    Schnell D, Deruddre S, Harrois A, Pottecher J, Cosson C, Adoui N, Benhamou D, Vicaut E, Azoulay E, Duranteau J, (2012) Renal resistive index better predicts the occurrence of acute kidney injury than cystatin C. Shock 38: 592–597PubMedCrossRefGoogle Scholar
  49. 49.
    Darmon M, Schortgen F, Vargas F, Liazydi A, Schlemmer B, Brun-Buisson C, Brochard L, (2011) Diagnostic accuracy of Doppler renal resistive index for reversibility of acute kidney injury in critically ill patients. Intensive Care Med 37: 68–76PubMedCrossRefGoogle Scholar
  50. 50.
    Schnell D, Reynaud M, Venot M, Le Maho AL, Dinic M, Baulieu M, Ducos G, Terreaux J, Zeni F, Azoulay E, Meziani F, Duranteau J, Darmon M, (2014) Resistive Index or color-Doppler semi-quantitative evaluation of renal perfusion by inexperienced physicians: results of a pilot study. Minerva Anestesiol 80: 1273–1281PubMedGoogle Scholar
  51. 51.
    Bossard G, Bourgoin P, Corbeau JJ, Huntzinger J, Beydon L, (2011) Early detection of postoperative acute kidney injury by Doppler renal resistive index in cardiac surgery with cardiopulmonary bypass. Br J Anaesth 107: 891–898PubMedCrossRefGoogle Scholar
  52. 52.
    Dewitte A, Coquin J, Meyssignac B, Joannes-Boyau O, Fleureau C, Roze H, Ripoche J, Janvier G, Combe C, Ouattara A, (2012) Doppler resistive index to reflect regulation of renal vascular tone during sepsis and acute kidney injury. Crit Care 16: R165PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Lerolle N, (2012) Please don’t call me RI anymore; I may not be the one you think I am! Crit Care 16: 174PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Bude RO, Rubin JM, (1999) Relationship between the resistive index and vascular compliance and resistance. Radiology 211: 411–417PubMedCrossRefGoogle Scholar
  55. 55.
    Murphy ME, Tublin ME, (2000) Understanding the Doppler RI: impact of renal arterial distensibility on the RI in a hydronephrotic ex vivo rabbit kidney model. J Ultrasound Med 19: 303–314PubMedCrossRefGoogle Scholar
  56. 56.
    Tublin ME, Tessler FN, Murphy ME, (1999) Correlation between renal vascular resistance, pulse pressure, and the resistive index in isolated perfused rabbit kidneys. Radiology 213: 258–264PubMedCrossRefGoogle Scholar
  57. 57.
    Naesens M, Heylen L, Lerut E, Claes K, De Wever L, Claus F, Oyen R, Kuypers D, Evenepoel P, Bammens B, Sprangers B, Meijers B, Pirenne J, Monbaliu D, de Jonge H, Metalidis C, De Vusser K, Vanrenterghem Y, (2013) Intrarenal resistive index after renal transplantation. N Engl J Med 369: 1797–1806PubMedCrossRefGoogle Scholar
  58. 58.
    Huen SC, Parikh CR, (2012) Predicting acute kidney injury after cardiac surgery: a systematic review. Ann Thorac Surg 93: 337–347PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Kheterpal S, Tremper KK, Heung M, Rosenberg AL, Englesbe M, Shanks AM, Campbell DA Jr, (2009) Development and validation of an acute kidney injury risk index for patients undergoing general surgery: results from a national data set. Anesthesiology 110: 505–515PubMedCrossRefGoogle Scholar
  60. 60.
    Pannu N, Nadim MK, (2008) An overview of drug-induced acute kidney injury. Crit Care Med 36: S216–223PubMedCrossRefGoogle Scholar
  61. 61.
    Bentley ML, Corwin HL, Dasta J, (2010) Drug-induced acute kidney injury in the critically ill adult: recognition and prevention strategies. Crit Care Med 38: S169–174PubMedCrossRefGoogle Scholar
  62. 62.
    Annane D, Siami S, Jaber S, Martin C, Elatrous S, Declere AD, Preiser JC, Outin H, Troche G, Charpentier C, Trouillet JL, Kimmoun A, Forceville X, Darmon M, Lesur O, Reignier J, Abroug F, Berger P, Clec’h C, Cousson J, Thibault L, Chevret S; CRISTAL Investigators, (2013) Effects of fluid resuscitation with colloids versus crystalloids on mortality in critically ill patients presenting with hypovolemic shock: the CRISTAL randomized trial. JAMA 310: 1809–1817PubMedCrossRefGoogle Scholar
  63. 63.
    Myburgh JA, Finfer S, Bellomo R, Billot L, Cass A, Gattas D, Glass P, Lipman J, Liu B, McArthur C, McGuinness S, Rajbhandari D, Taylor CB, Webb SA; CHEST Investigators; Australian and New Zealand Intensive Care Society Clinical Trials Group, (2012) N Engl J Med 367: 1901–1911PubMedCrossRefGoogle Scholar
  64. 64.
    Haase N, Perner A, Hennings LI, Siegemund M, Lauridsen B, Wetterslev M, Wetterslev J, (2013) Hydroxyethyl starch 130/0.38-0.45 versus crystalloid or albumin in patients with sepsis: systematic review with meta-analysis and trial sequential analysis.BMJ 346: f839PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Perner A, Haase N, Guttormsen AB, Tenhunen J, Klemenzson G, Aneman A, Madsen KR, Moller MH, Elkjaer JM, Poulsen LM, Bendtsen A, Winding R, Steensen M, Berezowicz P, Soe-Jensen P, Bestle M, Strand K, Wiis J, White JO, Thornberg KJ, Quist L, Nielsen J, Andersen LH, Holst LB, Thormar K, Kjaeldgaard AL, Fabritius ML, Mondrup F, Pott FC, Moller TP, Winkel P, Wetterslev J; 6S Trial Group; Scandinavian Critical Care Trials Group, (2012) Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N Engl J Med 367: 124–134PubMedCrossRefGoogle Scholar
  66. 66.
    Zarychanski R, Abou-Setta AM, Turgeon AF, Houston BL, McIntyre L, Marshall JC, Fergusson DA, (2013) Association of hydroxyethyl starch administration with mortality and acute kidney injury in critically ill patients requiring volume resuscitation: a systematic review and meta-analysis. JAMA 309: 678–688PubMedCrossRefGoogle Scholar
  67. 67.
    Guidet B, Martinet O, Boulain T, Philippart F, Poussel JF, Maizel J, Forceville X, Feissel M, Hasselmann M, Heininger A, Van Aken H, (2012) Assessment of hemodynamic efficacy and safety of 6% hydroxyethylstarch 130/0.4 versus 0.9% NaCl fluid replacement in patients with severe sepsis: the CRYSTMAS study. Crit Care 16: R94PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Patel A, Waheed U, Brett SJ, (2013) Randomised trials of 6% tetrastarch (hydroxyethyl starch 130/0.4 or 0.42) for severe sepsis reporting mortality: systematic review and meta-analysis. Intensive Care Med 39: 811–822PubMedCrossRefGoogle Scholar
  69. 69.
    Hartog CS, Reinhart K, (2012) CRYSTMAS study adds to concerns about renal safety and increased mortality in sepsis patients. Crit Care 16: 454; author reply 454PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Brunkhorst FM, Engel C, Bloos F, Meier-Hellmann A, Ragaller M, Weiler N, Moerer O, Gruendling M, Oppert M, Grond S, Olthoff D, Jaschinski U, John S, Rossaint R, Welte T, Schaefer M, Kern P, Kuhnt E, Kiehntopf M, Hartog C, Natanson C, Loeffler M, Reinhart K; German Competence Network S, (2008) Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med 358: 125–139PubMedCrossRefGoogle Scholar
  71. 71.
    Schortgen F, Lacherade JC, Bruneel F, Cattaneo I, Hemery F, Lemaire F, Brochard L, (2001) Effects of hydroxyethylstarch and gelatin on renal function in severe sepsis: a multicentre randomised study. Lancet 357: 911–916PubMedCrossRefGoogle Scholar
  72. 72.
    Perel P, Roberts I, Ker K, (2013) Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev: CD000567Google Scholar
  73. 73.
    Mutter TC, Ruth CA, Dart AB, (2013) Hydroxyethyl starch (HES) versus other fluid therapies: effects on kidney function. Cochrane Database Syst Rev: CD007594Google Scholar
  74. 74.
    Martin C, Jacob M, Vicaut E, Guidet B, Van Aken H, Kurz A, (2013) Effect of waxy maize-derived hydroxyethyl starch 130/0.4 on renal function in surgical patients. Anesthesiology 118: 387–394PubMedCrossRefGoogle Scholar
  75. 75.
    The European Medicines Agency’s Pharmacovigilance Risk Assessment Committee, (2015) Hydroxyethyl-starch solutions (HES) should no longer be used in patients with sepsis or burn injuries or in critically ill patients. http://www.ema.europa.eu/ema/index.jsp?curl=pages/news_and_events/news/2013/10/ news_ detail_001917. (Accessed: January 27th, 2016)Google Scholar
  76. 76.
    Kurtz TW, Morris RC Jr, (1983) Dietary chloride as a determinant of “sodium-dependent” hypertension. Science 222: 1139–1141PubMedCrossRefGoogle Scholar
  77. 77.
    Wilcox CS, (1983) Regulation of renal blood flow by plasma chloride. J Clin Invest 71: 726–735PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Hansen PB, Jensen BL, Skott O, (1998) Chloride regulates afferent arteriolar contraction in response to depolarization. Hypertension 32: 1066–1070PubMedCrossRefGoogle Scholar
  79. 79.
    Chowdhury AH, Cox EF, Francis ST, Lobo DN, (2012) A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and plasma-lyte® 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann Surg 256: 18–24PubMedCrossRefGoogle Scholar
  80. 80.
    Lobo DN, Awad S, (2014) Should chloride-rich crystalloids remain the mainstay of fluid resuscitation to prevent “pre-renal” acute kidney injury?: con. Kidney Int 86: 1096–1105PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Yunos NM, Kim IB, Bellomo R, Bailey M, Ho L, Story D, Gutteridge GA, Hart GK, (2011) The biochemical effects of restricting chloride-rich fluids in intensive care. Crit Care Med 39: 2419–2424PubMedCrossRefGoogle Scholar
  82. 82.
    Shaw AD, Bagshaw SM, Goldstein SL, Scherer LA, Duan M, Schermer CR, Kellum JA, (2012) Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to Plasma-Lyte. Ann Surg 255: 821–829PubMedCrossRefGoogle Scholar
  83. 83.
    Yunos NM, Bellomo R, Hegarty C, Story D, Ho L, Bailey M, (2012) Association between a chloride-liberal versus chloriderestrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA 308: 1566–1572PubMedCrossRefGoogle Scholar
  84. 84.
    McCluskey SA, Karkouti K, Wijeysundera D, Minkovich L, Tait G, Beattie WS, (2013) Hyperchloremia after noncardiac surgery is independently associated with increased morbidity and mortality: a propensity-matched cohort study. Anesth Analg 117: 412–421PubMedCrossRefGoogle Scholar
  85. 85.
    Raghunathan K, Shaw A, Nathanson B, Sturmer T, Brookhart A, Stefan MS, Setoguchi S, Beadles C, Lindenauer PK, (2014) Association between the choice of IV crystalloid and in-hospital mortality among critically ill adults with sepsis. Crit Care Med 42: 1585–1591PubMedCrossRefGoogle Scholar
  86. 86.
    Krajewski ML, Raghunathan K, Paluszkiewicz SM, Schermer CR, Shaw AD, (2015) Meta-analysis of highversus low-chloride content in perioperative and critical care fluid resuscitation. Br J Surg 102: 24–36PubMedCrossRefGoogle Scholar
  87. 87.
    Raghunathan K, Murray PT, Beattie WS, Lobo DN, Myburgh J, Sladen R, Kellum JA, Mythen MG, Shaw AD; Group AXI, (2014) Choice of fluid in acute illness: what should be given? An international consensus. Br J Anaesth 113: 772–783PubMedCrossRefGoogle Scholar
  88. 88.
    Antonelli M, Levy M, Andrews PJ, Chastre J, Hudson LD, Manthous C, Meduri GU, Moreno RP, Putensen C, Stewart T, Torres A, (2007) Hemodynamic monitoring in shock and implications for management. International Consensus Conference, Paris, France, 27–28 April 2006. Intensive Care Med 33: 575–590PubMedGoogle Scholar
  89. 89.
    Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb S, Beale RJ, Vincent JL, Moreno R; Surviving Sepsis Campaign Guidelines Committee including The Pediatric S, (2013) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med 39: 165–228PubMedCrossRefGoogle Scholar
  90. 90.
    Varpula M, Tallgren M, Saukkonen K, Voipio-Pulkki LM, Pettila V, (2005) Hemodynamic variables related to outcome in septic shock. Intensive Care Med 31: 1066–1071PubMedCrossRefGoogle Scholar
  91. 91.
    Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M; Early Goal-Directed Therapy Collaborative Group, (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345: 1368–1377PubMedCrossRefGoogle Scholar
  92. 92.
    Poukkanen M, Wilkman E, Vaara ST, Pettila V, Kaukonen KM, Korhonen AM, Uusaro A, Hovilehto S, Inkinen O, Laru-Sompa R, Hautamaki R, Kuitunen A, Karlsson S; FINNAKI Study Group, (2013) Hemodynamic variables and progression of acute kidney injury in critically ill patients with severe sepsis: data from the prospective observational FINNAKI study. Crit Care 17: R295PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Asfar P, Meziani F, Hamel JF, Grelon F, Megarbane B, Anguel N, Mira JP, Dequin PF, Gergaud S, Weiss N, Legay F, Le Tulzo Y, Conrad M, Robert R, Gonzalez F, Guitton C, Tamion F, Tonnelier JM, Guezennec P, Van Der Linden T, Vieillard-Baron A, Mariotte E, Pradel G, Lesieur O, Ricard JD, Herve F, du Cheyron D, Guerin C, Mercat A, Teboul JL, Radermacher P; SEPSISPAM Investigators, (2014) High versus low blood-pressure target in patients with septic shock. N Engl J Med 370: 1583–1593PubMedCrossRefGoogle Scholar
  94. 94.
    Bourgoin A, Leone M, Delmas A, Garnier F, Albanese J, Martin C, (2005) Increasing mean arterial pressure in patients with septic shock: effects on oxygen variables and renal function. Crit Care Med 33: 780–786PubMedCrossRefGoogle Scholar
  95. 95.
    LeDoux D, Astiz ME, Carpati CM, Rackow EC, (2000) Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med 28: 2729–2732PubMedCrossRefGoogle Scholar
  96. 96.
    Dunser MW, Takala J, Ulmer H, Mayr VD, Luckner G, Jochberger S, Daudel F, Lepper P, Hasibeder WR, Jakob SM, (2009) Arterial blood pressure during early sepsis and outcome. Intensive Care Med 35: 1225–1233PubMedCrossRefGoogle Scholar
  97. 97.
    Benchekroune S, Karpati PC, Berton C, Nathan C, Mateo J, Chaara M, Riche F, Laisne MJ, Payen D, Mebazaa A, (2008) Diastolic arterial blood pressure: a reliable early predictor of survival in human septic shock. J Trauma 64: 1188–1195PubMedCrossRefGoogle Scholar
  98. 98.
    Legrand M, Dupuis C, Simon C, Gayat E, Mateo J, Lukaszewicz AC, Payen D, (2013) Association between systemic hemodynamics and septic acute kidney injury in critically ill patients: a retrospective observational study. Crit Care 17: R278PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Walsh M, Devereaux PJ, Garg AX, Kurz A, Turan A, Rodseth RN, Cywinski J, Thabane L, Sessler DI, (2013) Relationship between intraoperative mean arterial pressure and clinical outcomes after noncardiac surgery: toward an empirical definition of hypotension. Anesthesiology 119: 507–515PubMedCrossRefGoogle Scholar
  100. 100.
    Haase M, Bellomo R, Story D, Letis A, Klemz K, Matalanis G, Seevanayagam S, Dragun D, Seeliger E, Mertens PR, HaaseFielitz A, (2012) Effect of mean arterial pressure, haemoglobin and blood transfusion during cardiopulmonary bypass on post-operative acute kidney injury. Nephrol Dial Transplant 27: 153–160PubMedCrossRefGoogle Scholar
  101. 101.
    Kanji HD, Schulze CJ, Hervas-Malo M, Wang P, Ross DB, Zibdawi M, Bagshaw SM, (2010) Difference between pre-operative and cardiopulmonary bypass mean arterial pressure is independently associated with early cardiac surgery-associated acute kidney injury. J Cardiothorac Surg 5: 71PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Brienza N, Giglio MT, Marucci M, Fiore T, (2009) Does perioperative hemodynamic optimization protect renal function in surgical patients? A meta-analytic study. Crit Care Med 37: 2079–2090PubMedCrossRefGoogle Scholar
  103. 103.
    Grocott MP, Dushianthan A, Hamilton MA, Mythen MG, Harrison D, Rowan K; Optimisation Systematic Review Steering Group, (2013) Perioperative increase in global blood flow to explicit defined goals and outcomes after surgery: a Cochrane systematic review. Br J Anaesth 111: 535–548PubMedCrossRefGoogle Scholar
  104. 104.
    Bouchard J, Soroko SB, Chertow GM, Himmelfarb J, Ikizler TA, Paganini EP, Mehta RL; Program to Improve Care in Acute Renal Disease Study Group, (2009) Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int 76: 422–427PubMedCrossRefGoogle Scholar
  105. 105.
    Payen D, de Pont AC, Sakr Y, Spies C, Reinhart K, Vincent JL; Sepsis Occurrence in Acutely Ill Patients I, (2008) A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care 12: R74PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Teixeira C, Garzotto F, Piccinni P, Brienza N, Iannuzzi M, Gramaticopolo S, Forfori F, Pelaia P, Rocco M, Ronco C, Anello CB, Bove T, Carlini M, Michetti V, Cruz DN; NEFROlogia e Cura INTensiva (NEFROINT) investigators, (2013) Fluid balance and urine volume are independent predictors of mortality in acute kidney injury. Crit Care 17: R14PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Grams ME, Estrella MM, Coresh J, Brower RG, Liu KD, National Heart L; Blood Institute Acute Respiratory Distress Syndrome N, (2011) Fluid balance, diuretic use, and mortality in acute kidney injury. Clin J Am Soc Nephrol 6: 966–973PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    RENAL Replacement Therapy Study Investigators, Bellomo R, Cass A, Cole L, Finfer S, Gallagher M, Lee J, Lo S, McArthur C, McGuiness S, Norton R, Myburgh J, Scheinkestel C, Su S, (2012) An observational study fluid balance and patient outcomes in the randomized evaluation of normal versus augmented level of replacement therapy trial. Crit Care Med 40: 1753–1760CrossRefGoogle Scholar
  109. 109.
    Boland MR, Noorani A, Varty K, Coffey JC, Agha R, Walsh SR, (2013) Perioperative fluid restriction in major abdominal surgery: systematic review and meta-analysis of randomized, clinical trials. World J Surg 37: 1193–1202PubMedCrossRefGoogle Scholar
  110. 110.
    Varadhan KK, Lobo DN, (2010) A meta-analysis of randomised controlled trials of intravenous fluid therapy in major elective open abdominal surgery: getting the balance right. Proc Nutr Soc 69: 488–498PubMedCrossRefGoogle Scholar
  111. 111.
    Desjars P, Pinaud M, Bugnon D, Tasseau F, (1989) Norepinephrine therapy has no deleterious renal effects in human septic shock. Crit Care Med 17: 426–429PubMedCrossRefGoogle Scholar
  112. 112.
    Desjars P, Pinaud M, Potel G, Tasseau F, Touze MD, (1987) A reappraisal of norepinephrine therapy in human septic shock. Crit Care Med 15: 134–137PubMedCrossRefGoogle Scholar
  113. 113.
    Fukuoka T, Nishimura M, Imanaka H, Taenaka N, Yoshiya I, Takezawa J, (1989) Effects of norepinephrine on renal function in septic patients with normal and elevated serum lactate levels. Crit Care Med 17: 1104–1107PubMedCrossRefGoogle Scholar
  114. 114.
    Martin C, Viviand X, Leone M, Thirion X, (2000) Effect of norepinephrine on the outcome of septic shock. Crit Care Med 28: 2758–2765PubMedCrossRefGoogle Scholar
  115. 115.
    Redl-Wenzl EM, Armbruster C, Edelmann G, Fischl E, Kolacny M, Wechsler-Fordos A, Sporn P, (1990) Noradrenaline in the “high output-low resistance” state of patients with abdominal sepsis. Anaesthesist 39: 525–529PubMedGoogle Scholar
  116. 116.
    Albanese J, Leone M, Garnier F, Bourgoin A, Antonini F, Martin C, (2004) Renal effects of norepinephrine in septic and nonseptic patients. Chest 126: 534–539PubMedCrossRefGoogle Scholar
  117. 117.
    Martin C, Papazian L, Perrin G, Saux P, Gouin F, (1993) Norepinephrine or dopamine for the treatment of hyperdynamic septic shock? Chest 103: 1826–1831PubMedCrossRefGoogle Scholar
  118. 118.
    Leone M, Albanese J, Delmas A, Chaabane W, Garnier F, Martin C, (2004) Terlipressin in catecholamine-resistant septic shock patients. Shock 22: 314–319PubMedCrossRefGoogle Scholar
  119. 119.
    Albanese J, Leone M, Delmas A, Martin C, (2005) Terlipressin or norepinephrine in hyperdynamic septic shock: a prospective, randomized study. Crit Care Med 33: 1897–1902PubMedCrossRefGoogle Scholar
  120. 120.
    Rihal CS, Textor SC, Grill DE, Berger PB, Ting HH, Best PJ, Singh M, Bell MR, Barsness GW, Mathew V, Garratt KN, Holmes DR Jr., (2002) Incidence and prognostic importance of acute renal failure after percutaneous coronary intervention. Circulation 105: 2259–2264PubMedCrossRefGoogle Scholar
  121. 121.
    Rudnick MR, Goldfarb S, Tumlin J, (2008) Contrast-induced nephropathy: is the picture any clearer? Clin J Am Soc Nephrol 3: 261–262PubMedCrossRefGoogle Scholar
  122. 122.
    Hoste EA, Doom S, De Waele J, Delrue LJ, Defreyne L, Benoit DD, Decruyenaere J, (2011) Epidemiology of contrastassociated acute kidney injury in ICU patients: a retrospective cohort analysis. Intensive Care Med 37: 1921–1931PubMedCrossRefGoogle Scholar
  123. 123.
    Chousterman BG, Bouadma L, Moutereau S, Loric S, AlvarezGonzalez A, Mekontso-Dessap A, Laissy JP, Rahmouni A, Katsahian S, Brochard L, Schortgen F, (2013) Prevention of contrast-induced nephropathy by N-acetylcysteine in critically ill patients: different definitions, different results. J Crit Care 28: 701–709PubMedCrossRefGoogle Scholar
  124. 124.
    Valette X, Savary B, Nowoczyn M, Daubin C, Pottier V, Terzi N, Seguin A, Fradin S, Charbonneau P, Hanouz JL, du Cheyron D, (2013) Accuracy of plasma neutrophil gelatinase-associated lipocalin in the early diagnosis of contrast-induced acute kidney injury in critical illness. Intensive Care Med 39: 857–865PubMedCrossRefGoogle Scholar
  125. 125.
    Clec’h C, Razafimandimby D, Laouisset M, Chemouni F, Cohen Y, (2013) Incidence and outcome of contrast-associated acute kidney injury in a mixed medical-surgical ICU population: a retrospective study. BMC Nephrol 14: 31PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Brar SS, Hiremath S, Dangas G, Mehran R, Brar SK, Leon MB, (2009) Sodium bicarbonate for the prevention of contrast induced-acute kidney injury: a systematic review and metaanalysis. Clin J Am Soc Nephrol 4: 1584–1592PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Zoungas S, Ninomiya T, Huxley R, Cass A, Jardine M, Gallagher M, Patel A, Vasheghani-Farahani A, Sadigh G, Perkovic V, (2009) Systematic review: sodium bicarbonate treatment regimens for the prevention of contrast-induced nephropathy. Ann Intern Med 151: 631–638PubMedCrossRefGoogle Scholar
  128. 128.
    Brown JR, Block CA, Malenka DJ, O’Connor GT, Schoolwerth AC, Thompson CA, (2009) Sodium bicarbonate plus N-acetylcysteine prophylaxis: a meta-analysis. JACC Cardiovasc Interv 2: 1116–1124PubMedCrossRefGoogle Scholar
  129. 129.
    Sun Z, Fu Q, Cao L, Jin W, Cheng L, Li Z, (2013) Intravenous N-acetylcysteine for prevention of contrast-induced nephropathy: a meta-analysis of randomized, controlled trials. PLoS One 8: e55124CrossRefGoogle Scholar
  130. 130.
    Jang JS, Jin HY, Seo JS, Yang TH, Kim DK, Kim TH, Urm SH, Kim DS, Kim DK, Seol SH, Kim DI, Cho KI, Kim BH, Park YH, Je HG, Ahn JM, Kim WJ, Lee JY, Lee SW, (2012) Sodium bicarbonate therapy for the prevention of contrast-induced acute kidney injury — a systematic review and meta-analysis. Circ J 76: 2255–2265PubMedCrossRefGoogle Scholar
  131. 131.
    Solomon R, Werner C, Mann D, D’Elia J, Silva P, (1994) Effects of saline, mannitol, and furosemide on acute decreases in renal function induced by radiocontrast agents. N Engl J Med 331: 1416–1420PubMedCrossRefGoogle Scholar
  132. 132.
    Vaitkus PT, Brar C, (2007) N-acetylcysteine in the prevention of contrast-induced nephropathy: publication bias perpetuated by meta-analyses. Am Heart J 153: 275–280PubMedCrossRefGoogle Scholar
  133. 133.
    Hoste EA, De Waele JJ, Gevaert SA, Uchino S, Kellum JA, (2010) Sodium bicarbonate for prevention of contrast-induced acute kidney injury: a systematic review and meta-analysis. Nephrol Dial Transplant 25: 747–758PubMedCrossRefGoogle Scholar
  134. 134.
    Klima T, Christ A, Marana I, Kalbermatter S, Uthoff H, Burri E, Hartwiger S, Schindler C, Breidthardt T, Marenzi G, Mueller C, (2012) Sodium chloride versus sodium bicarbonate for the prevention of contrast medium-induced nephropathy: a randomized controlled trial. Eur Heart J 33: 2071–2079PubMedCrossRefGoogle Scholar
  135. 135.
    Kooiman J, Sijpkens YW, de Vries JP, Brulez HF, Hamming JF, van der Molen AJ, Aarts NJ, Cannegieter SC, Putter H, Swarts R, van den Hout WB, Rabelink TJ, Huisman MV, (2014) A randomized comparison of 1-h sodium bicarbonate hydration versus standard peri-procedural saline hydration in patients with chronic kidney disease undergoing intravenous contrast-enhanced computerized tomography. Nephrol Dial Transplant 29: 1029–1036PubMedCrossRefGoogle Scholar
  136. 136.
    Pattharanitima P, Tasanarong A, (2014) Pharmacological strategies to prevent contrast-induced acute kidney injury. Biomed Res Int 2014: 236930PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Kelly AM, Dwamena B, Cronin P, Bernstein SJ, Carlos RC, (2008) Meta-analysis: effectiveness of drugs for preventing contrast-induced nephropathy. Ann Intern Med 148: 284–294PubMedCrossRefGoogle Scholar
  138. 138.
    McCullough PA, (2008) Radiocontrast-induced acute kidney injury. Nephron Physiol 109: 61–72CrossRefGoogle Scholar
  139. 139.
    Kellum JA, Leblanc M, Venkataraman R, (2008) Acute renal failure. BMJ Clin Evid pii: 2001Google Scholar
  140. 140.
    Rybak MJ, Abate BJ, Kang SL, Ruffing MJ, Lerner SA, Drusano GL, (1999) Prospective evaluation of the effect of an aminoglycoside dosing regimen on rates of observed nephrotoxicity and ototoxicity. Antimicrob Agents Chemother 43: 1549–1555PubMedPubMedCentralGoogle Scholar
  141. 141.
    Bailey TC, Little JR, Littenberg B, Reichley RM, Dunagan WC, (1997) A meta-analysis of extended-interval dosing versus multiple daily dosing of aminoglycosides. Clin Infect Dis 24: 786–795PubMedCrossRefGoogle Scholar
  142. 142.
    Hatala R, Dinh T, Cook DJ, (1996) Once-daily aminoglycoside dosing in immunocompetent adults: a meta-analysis. Ann Intern Med 124: 717–725PubMedCrossRefGoogle Scholar
  143. 143.
    Wargo KA, Edwards JD, (2014) Aminoglycoside-induced nephrotoxicity. J Pharm Pract 27: 573–577PubMedCrossRefGoogle Scholar
  144. 144.
    Picard W, Bazin F, Clouzeau B, Bui HN, Soulat M, Guilhon E, Vargas F, Hilbert G, Bouchet S, Gruson D, Moore N, Boyer A, (2014) Propensity-based study of aminoglycoside nephrotoxicity in patients with severe sepsis or septic shock. Antimicrob Agents Chemother 58: 7468–7474PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Boyer A, Gruson D, Bouchet S, Clouzeau B, Hoang-Nam B, Vargas F, Gilles H, Molimard M, Rogues AM, Moore N, (2013) Aminoglycosides in septic shock: an overview, with specific consideration given to their nephrotoxic risk. Drug Saf 36: 217–230PubMedCrossRefGoogle Scholar
  146. 146.
    Croes S, Koop AH, van Gils SA, Neef C, (2012) Efficacy, nephrotoxicity and ototoxicity of aminoglycosides, mathematically modelled for modelling-supported therapeutic drug monitoring. Eur J Pharm Sci 45: 90–100PubMedCrossRefGoogle Scholar
  147. 147.
    Pagkalis S, Mantadakis E, Mavros MN, Ammari C, Falagas ME, (2011) Pharmacological considerations for the proper clinical use of aminoglycosides. Drugs 71: 2277–2294PubMedCrossRefGoogle Scholar
  148. 148.
    Oliveira JF, Silva CA, Barbieri CD, Oliveira GM, Zanetta DM, Burdmann EA, (2009) Prevalence and risk factors for aminoglycoside nephrotoxicity in intensive care units. Antimicrob Agents Chemother 53: 2887–2891PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Selby NM, Shaw S, Woodier N, Fluck RJ, Kolhe NV, (2009) Gentamicin-associated acute kidney injury. QJM 102: 873–880PubMedCrossRefGoogle Scholar
  150. 150.
    Bartal C, Danon A, Schlaeffer F, Reisenberg K, Alkan M, Smoliakov R, Sidi A, Almog Y, (2003) Pharmacokinetic dosing of aminoglycosides: a controlled trial. Am J Med 114: 194–198PubMedCrossRefGoogle Scholar
  151. 151.
    Perazella MA, (2012) Drug use and nephrotoxicity in the intensive care unit. Kidney Int 81: 1172–1178PubMedCrossRefGoogle Scholar
  152. 152.
    Papadopoulos J, Smithburger PL, (2010) Common drug interactions leading to adverse drug events in the intensive care unit: management and pharmacokinetic considerations. Crit Care Med 38: S126–135PubMedCrossRefGoogle Scholar
  153. 153.
    Schetz M, Dasta J, Goldstein S, Golper T, (2005) Drug-induced acute kidney injury. Curr Opin Crit Care 11: 555–565PubMedCrossRefGoogle Scholar
  154. 154.
    Ho KM, Power BM, (2010) Benefits and risks of furosemide in acute kidney injury. Anaesthesia 65: 283–293PubMedCrossRefGoogle Scholar
  155. 155.
    Ho KM, Sheridan DJ, (2006) Meta-analysis of frusemide to prevent or treat acute renal failure. BMJ 333: 420PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Haase M, Haase-Fielitz A, Plass M, Kuppe H, Hetzer R, Hannon C, Murray PT, Bailey MJ, Bellomo R, Bagshaw SM, (2013) Prophylactic perioperative sodium bicarbonate to prevent acute kidney injury following open heart surgery: a multicenter double-blinded randomized controlled trial. PLoS Med 10: e1001426CrossRefGoogle Scholar
  157. 157.
    Kristeller JL, Zavorsky GS, Prior JE, Keating DA, Brady MA, Romaldini TA, Hickman TL, Stahl RF, (2013) Lack of effectiveness of sodium bicarbonate in preventing kidney injury in patients undergoing cardiac surgery: a randomized controlled trial. Pharmacotherapy 33: 710–717PubMedCrossRefGoogle Scholar
  158. 158.
    McGuinness SP, Parke RL, Bellomo R, Van Haren FM, Bailey M, (2013) Sodium bicarbonate infusion to reduce cardiac surgery-associated acute kidney injury: a phase II multicenter double-blind randomized controlled trial. Crit Care Med 41: 1599–1607PubMedCrossRefGoogle Scholar
  159. 159.
    Hewitt J, Uniacke M, Hansi NK, Venkat-Raman G, McCarthy K, (2012) Sodium bicarbonate supplements for treating acute kidney injury. Cochrane Database Syst Rev: CD009204Google Scholar
  160. 160.
    Bosch X, Poch E, Grau JM, (2009) Rhabdomyolysis and acute kidney injury. N Engl J Med 361: 62–72PubMedCrossRefGoogle Scholar
  161. 161.
    Chatzizisis YS, Misirli G, Hatzitolios AI, Giannoglou GD, (2008) The syndrome of rhabdomyolysis: complications and treatment. Eur J Intern Med 19: 568–574PubMedCrossRefGoogle Scholar
  162. 162.
    Scharman EJ, Troutman WG, (2013) Prevention of kidney injury following rhabdomyolysis: a systematic review. Ann Pharmacother 47: 90–105PubMedCrossRefGoogle Scholar
  163. 163.
    Shimazu T, Yoshioka T, Nakata Y, Ishikawa K, Mizushima Y, Morimoto F, Kishi M, Takaoka M, Tanaka H, Iwai A, Hiraide A, (1997) Fluid resuscitation and systemic complications in crush syndrome: 14 Hanshin-Awaji earthquake patients. J Trauma 42: 641–646PubMedCrossRefGoogle Scholar
  164. 164.
    Gunal AI, Celiker H, Dogukan A, Ozalp G, Kirciman E, Simsekli H, Gunay I, Demircin M, Belhan O, Yildirim MA, Sever MS, (2004) Early and vigorous fluid resuscitation prevents acute renal failure in the crush victims of catastrophic earthquakes. J Am Soc Nephrol 15: 1862–1867PubMedCrossRefGoogle Scholar
  165. 165.
    Homsi E, Barreiro MF, Orlando JM, Higa EM, (1997) Prophylaxis of acute renal failure in patients with rhabdomyolysis. Ren Fail 19: 283–288PubMedCrossRefGoogle Scholar
  166. 166.
    Brown CV, Rhee P, Chan L, Evans K, Demetriades D, Velmahos GC, (2004) Preventing renal failure in patients with rhabdomyolysis: do bicarbonate and mannitol make a difference? J Trauma 56: 1191–1196PubMedCrossRefGoogle Scholar
  167. 167.
    Cho YS, Lim H, Kim SH, (2007) Comparison of lactated Ringer’s solution and 0.9% saline in the treatment of rhabdomyolysis induced by doxylamine intoxication. Emerg Med J 24: 276–280PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Yallop KG, Sheppard SV, Smith DC, (2008) The effect of mannitol on renal function following cardio-pulmonary bypass in patients with normal pre-operative creatinine. Anaesthesia 63: 576–582PubMedCrossRefGoogle Scholar
  169. 169.
    Smith MN, Best D, Sheppard SV, Smith DC, (2008) The effect of mannitol on renal function after cardiopulmonary bypass in patients with established renal dysfunction. Anaesthesia 63: 701–704PubMedCrossRefGoogle Scholar
  170. 170.
    Majumdar SR, Kjellstrand CM, Tymchak WJ, Hervas-Malo M, Taylor DA, Teo KK, (2009) Forced euvolemic diuresis with mannitol and furosemide for prevention of contrast-induced nephropathy in patients with CKD undergoing coronary angiography: a randomized controlled trial. Am J Kidney Dis 54: 602–609PubMedCrossRefGoogle Scholar
  171. 171.
    Friedrich JO, Adhikari N, Herridge MS, Beyene J, (2005) Meta-analysis: low-dose dopamine increases urine output but does not prevent renal dysfunction or death. Ann Intern Med 142: 510–524PubMedCrossRefGoogle Scholar
  172. 172.
    Kellum JA, J MD, (2001) Use of dopamine in acute renal failure: a meta-analysis. Crit Care Med 29: 1526–1531PubMedCrossRefGoogle Scholar
  173. 173.
    Bellomo R, Chapman M, Finfer S, Hickling K, Myburgh J, (2000) Low-dose dopamine in patients with early renal dysfunction: a placebo-controlled randomised trial. Australian and New Zealand Intensive Care Society (ANZICS) Clinical Trials Group. Lancet 356: 2139–2143PubMedGoogle Scholar
  174. 174.
    Stone GW, McCullough PA, Tumlin JA, Lepor NE, Madyoon H, Murray P, Wang A, Chu AA, Schaer GL, Stevens M, Wilensky RL, O’Neill WW, Investigators C, (2003) Fenoldopam mesylate for the prevention of contrast-induced nephropathy: a randomized controlled trial. JAMA 290: 2284–2291PubMedCrossRefGoogle Scholar
  175. 175.
    Caimmi PP, Pagani L, Micalizzi E, Fiume C, Guani S, Bernardi M, Parodi F, Cordero G, Fregonara M, Kapetanakis E, Panella M, Degasperis C, (2003) Fenoldopam for renal protection in patients undergoing cardiopulmonary bypass. J Cardiothorac Vasc Anesth 17: 491–494PubMedCrossRefGoogle Scholar
  176. 176.
    Bove T, Landoni G, Calabro MG, Aletti G, Marino G, Cerchierini E, Crescenzi G, Zangrillo A, (2005) Renoprotective action of fenoldopam in high-risk patients undergoing cardiac surgery: a prospective, double-blind, randomized clinical trial. Circulation 111: 3230–3235PubMedCrossRefGoogle Scholar
  177. 177.
    Brienza N, Malcangi V, Dalfino L, Trerotoli P, Guagliardi C, Bortone D, Faconda G, Ribezzi M, Ancona G, Bruno F, Fiore T, (2006) A comparison between fenoldopam and low-dose dopamine in early renal dysfunction of critically ill patients. Crit Care Med 34: 707–714PubMedCrossRefGoogle Scholar
  178. 178.
    Ranucci M, Soro G, Barzaghi N, Locatelli A, Giordano G, Vavassori A, Manzato A, Melchiorri C, Bove T, Juliano G, Uslenghi MF, (2004) Fenoldopam prophylaxis of postoperative acute renal failure in high-risk cardiac surgery patients. Ann Thorac Surg 78: 1332–1337; discussion 1337–1338PubMedCrossRefGoogle Scholar
  179. 179.
    Tumlin JA, Finkel KW, Murray PT, Samuels J, Cotsonis G, Shaw AD, (2005) Fenoldopam mesylate in early acute tubular necrosis: a randomized, double-blind, placebo-controlled clinical trial. Am J Kidney Dis 46: 26–34PubMedCrossRefGoogle Scholar
  180. 180.
    Morelli A, Ricci Z, Bellomo R, Ronco C, Rocco M, Conti G, De Gaetano A, Picchini U, Orecchioni A, Portieri M, Coluzzi F, Porzi P, Serio P, Bruno A, Pietropaoli P, (2005) Prophylactic fenoldopam for renal protection in sepsis: a randomized, double-blind, placebo-controlled pilot trial. Crit Care Med 33: 2451–2456PubMedCrossRefGoogle Scholar
  181. 181.
    Patel NN, Rogers CA, Angelini GD, Murphy GJ, (2011) Pharmacological therapies for the prevention of acute kidney injury following cardiac surgery: a systematic review. Heart Fail Rev 16: 553–567PubMedCrossRefGoogle Scholar
  182. 182.
    Landoni G, Biondi-Zoccai GG, Marino G, Bove T, Fochi O, Maj G, Calabro MG, Sheiban I, Tumlin JA, Ranucci M, Zangrillo A, (2008) Fenoldopam reduces the need for renal replacement therapy and in-hospital death in cardiovascular surgery: a meta-analysis. J Cardiothorac Vasc Anesth 22: 27–33PubMedCrossRefGoogle Scholar
  183. 183.
    Landoni G, Biondi-Zoccai GG, Tumlin JA, Bove T, De Luca M, Calabro MG, Ranucci M, Zangrillo A, (2007) Beneficial impact of fenoldopam in critically ill patients with or at risk for acute renal failure: a meta-analysis of randomized clinical trials. Am J Kidney Dis 49: 56–68PubMedCrossRefGoogle Scholar
  184. 184.
    Zangrillo A, Biondi-Zoccai GG, Frati E, Covello RD, Cabrini L, Guarracino F, Ruggeri L, Bove T, Bignami E, Landoni G, (2012) Fenoldopam and acute renal failure in cardiac surgery: a meta-analysis of randomized placebo-controlled trials. J Cardiothorac Vasc Anesth 26: 407–413PubMedCrossRefGoogle Scholar
  185. 185.
    Sackner-Bernstein JD, Skopicki HA, Aaronson KD, (2005) Risk of worsening renal function with nesiritide in patients with acutely decompensated heart failure. Circulation 111: 1487–1491PubMedCrossRefGoogle Scholar
  186. 186.
    Nigwekar SU, Navaneethan SD, Parikh CR, Hix JK, (2009) Atrial natriuretic peptide for management of acute kidney injury: a systematic review and meta-analysis. Clin J Am Soc Nephrol 4: 261–272PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Mitaka C, Kudo T, Haraguchi G, Tomita M, (2011) Cardiovascular and renal effects of carperitide and nesiritide in cardiovascular surgery patients: a systematic review and meta-analysis. Crit Care 15: R258PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Nigwekar SU, Navaneethan SD, Parikh CR, Hix JK, (2009) Atrial natriuretic peptide for preventing and treating acute kidney injury. Cochrane Database Syst Rev: CD006028Google Scholar
  189. 189.
    Adabag AS, Ishani A, Bloomfield HE, Ngo AK, Wilt TJ, (2009) Efficacy of N-acetylcysteine in preventing renal injury after heart surgery: a systematic review of randomized trials. Eur Heart J 30: 1910–1917PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Duong MH, MacKenzie TA, Malenka DJ, (2005) N-acetylcysteine prophylaxis significantly reduces the risk of radiocontrast-induced nephropathy: comprehensive meta-analysis. Catheter Cardiovasc Interv 64: 471–479PubMedCrossRefGoogle Scholar
  191. 191.
    Ho KM, Morgan DJ, (2009) Meta-analysis of N-acetylcysteine to prevent acute renal failure after major surgery. Am J Kidney Dis 53: 33–40PubMedCrossRefGoogle Scholar
  192. 192.
    Nigwekar SU, Kandula P, (2009) N-acetylcysteine in cardiovascular-surgery-associated renal failure: a meta-analysis. Ann Thorac Surg 87: 139–147PubMedCrossRefGoogle Scholar
  193. 193.
    Hirschberg R, Kopple J, Lipsett P, Benjamin E, Minei J, Albertson T, Munger M, Metzler M, Zaloga G, Murray M, Lowry S, Conger J, McKeown W, O’Shea M, Baughman R, Wood K, Haupt M, Kaiser R, Simms H, Warnock D, Summer W, Hintz R, Myers B, Haenftling K, Capra W, Pike M, Guler HP, (1999) Multicenter clinical trial of recombinant human insulin-like growth factor I in patients with acute renal failure. Kidney Int 55: 2423–2432PubMedCrossRefGoogle Scholar
  194. 194.
    Hladunewich MA, Corrigan G, Derby GC, Ramaswamy D, Kambham N, Scandling JD, Myers BD, (2003) A randomized, placebo-controlled trial of IGF-1 for delayed graft function: a human model to study postischemic ARF. Kidney Int 64: 593–602PubMedCrossRefGoogle Scholar
  195. 195.
    Endre ZH, Walker RJ, Pickering JW, Shaw GM, Frampton CM, Henderson SJ, Hutchison R, Mehrtens JE, Robinson JM, Schollum JB, Westhuyzen J, Celi LA, McGinley RJ, Campbell IJ, George PM, (2010) Early intervention with erythropoietin does not affect the outcome of acute kidney injury (the EARLYARF trial). Kidney Int 77: 1020–1030PubMedCrossRefGoogle Scholar
  196. 196.
    Song YR, Lee T, You SJ, Chin HJ, Chae DW, Lim C, Park KH, Han S, Kim JH, Na KY, (2009) Prevention of acute kidney injury by erythropoietin in patients undergoing coronary artery bypass grafting: a pilot study. Am J Nephrol 30: 253–260PubMedCrossRefGoogle Scholar
  197. 197.
    Gottlieb SS, Brater DC, Thomas I, Havranek E, Bourge R, Goldman S, Dyer F, Gomez M, Bennett D, Ticho B, Beckman E, Abraham WT, (2002) BG9719 (CVT-124), an A1 adenosine receptor antagonist, protects against the decline in renal function observed with diuretic therapy. Circulation 105: 1348–1353PubMedCrossRefGoogle Scholar
  198. 198.
    Givertz MM, Massie BM, Fields TK, Pearson LL, Dittrich HC; CKI, Investigators CKI, (2007) The effects of KW-3902, an adenosine A1-receptor antagonist, on diuresis and renal function in patients with acute decompensated heart failure and renal impairment or diuretic resistance. J Am Coll Cardiol 50: 1551–1560PubMedCrossRefGoogle Scholar
  199. 199.
    Massie BM, O’Connor CM, Metra M, Ponikowski P, Teerlink JR, Cotter G, Weatherley BD, Cleland JG, Givertz MM, Voors A, DeLucca P, Mansoor GA, Salerno CM, Bloomfield DM, Dittrich HC; Investigators P, PROTECT Investigators and Committees, (2010) Rolofylline, an adenosine A1-receptor antagonist, in acute heart failure. N Engl J Med 363: 1419–1428PubMedCrossRefGoogle Scholar
  200. 200.
    Howard SC, Jones DP, Pui CH, (2011) The tumor lysis syndrome. N Engl J Med 364: 1844–1854PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Mikkelsen TS, Mamoudou AD, Tuckuviene R, Wehner PS, Schroeder H, (2014) Extended duration of prehydration does not prevent nephrotoxicity or delayed drug elimination in high-dose methotrexate infusions: a prospectively randomized cross-over study. Pediatr Blood Cancer 61: 297–301PubMedCrossRefGoogle Scholar
  202. 202.
    Sand TE, Jacobsen S, (1981) Effect of urine pH and flow on renal clearance of methotrexate. Eur J Clin Pharmacol 19: 453–456PubMedCrossRefGoogle Scholar
  203. 203.
    Christensen ML, Rivera GK, Crom WR, Hancock ML, Evans WE, (1988) Effect of hydration on methotrexate plasma concentrations in children with acute lymphocytic leukemia. J Clin Oncol 6: 797–801PubMedCrossRefGoogle Scholar
  204. 204.
    Kinoshita A, Kurosawa Y, Kondoh K, Suzuki T, Manabe A, Inukai T, Sugita K, Nakazawa S, (2003) Effects of sodium in hydration solution on plasma methotrexate concentrations following high-dose methotrexate in children with acute lymphoblastic leukemia. Cancer Chemother Pharmacol 51: 256–260PubMedGoogle Scholar
  205. 205.
    Relling MV, Fairclough D, Ayers D, Crom WR, Rodman JH, Pui CH, Evans WE, (1994) Patient characteristics associated with high-risk methotrexate concentrations and toxicity. J Clin Oncol 12: 1667–1672PubMedCrossRefGoogle Scholar
  206. 206.
    Darmon M, Vincent F, Camous L, Canet E, Bonmati C, Braun T, Caillot D, Cornillon J, Dimicoli S, Etienne A, Galicier L, Garnier A, Girault S, Hunault-Berger M, Marolleau JP, Moreau P, Raffoux E, Recher C, Thiebaud A, Thieblemont C, Azoulay E; Groupe de Recherche en Réanimation Respiratoire et Onco-Hématologique (GRRR-OH), (2013) Tumour lysis syndrome and acute kidney injury in high-risk haematology patients in the rasburicase era. A prospective multicentre study from the Groupe de recherche en réanimation respiratoire et oncohématologique. Br J Haematol 162: 489–497PubMedCrossRefGoogle Scholar
  207. 207.
    Galardy PJ, Hochberg J, Perkins SL, Harrison L, Goldman S, Cairo MS, (2013) Rasburicase in the prevention of laboratory clinical tumour lysis syndrome in children with advanced mature B-NHL: a Children’s Oncology Group report. Br J Haematol 163: 365–372PubMedCrossRefGoogle Scholar
  208. 208.
    Shimada M, Johnson RJ, May WS Jr., Lingegowda V, Sood P, Nakagawa T, Van QC, Dass B, Ejaz AA, (2009) A novel role for uric acid in acute kidney injury associated with tumour lysis syndrome. Nephrol Dial Transplant 24: 2960–2964PubMedCrossRefGoogle Scholar
  209. 209.
    Lopez-Olivo MA, Pratt G, Palla SL, Salahudeen A, (2013) Rasburicase in tumor lysis syndrome of the adult: a systematic review and meta-analysis. Am J Kidney Dis 62: 481–492PubMedCrossRefGoogle Scholar
  210. 210.
    Cheuk DK, Chiang AK, Chan GC, Ha SY, (2010) Urate oxidase for the prevention and treatment of tumor lysis syndrome in children with cancer. Cochrane Database Syst Rev: CD006945Google Scholar
  211. 211.
    Cortes J, Moore JO, Maziarz RT, Wetzler M, Craig M, Matous J, Luger S, Dey BR, Schiller GJ, Pham D, Abboud CN, Krishnamurthy M, Brown A, Jr., Laadem A, Seiter K, (2010) Control of plasma uric acid in adults at risk for tumor Lysis syndrome: efficacy and safety of rasburicase alone and rasburicase followed by allopurinol compared with allopurinol alone—results of a multicenter phase III study. J Clin Oncol 28: 4207–4213PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Goldman SC, Holcenberg JS, Finklestein JZ, Hutchinson R, Kreissman S, Johnson FL, Tou C, Harvey E, Morris E, Cairo MS, (2001) A randomized comparison between rasburicase and allopurinol in children with lymphoma or leukemia at high risk for tumor lysis. Blood 97: 2998–3003PubMedCrossRefGoogle Scholar
  213. 213.
    Coiffier B, Altman A, Pui CH, Younes A, Cairo MS, (2008) Guidelines for the management of pediatric and adult tumor lysis syndrome: an evidence-based review. J Clin Oncol 26: 2767–2778PubMedCrossRefGoogle Scholar
  214. 214.
    Cairo MS, Coiffier B, Reiter A, Younes A, Panel TLSE, (2010) Recommendations for the evaluation of risk and prophylaxis of tumour lysis syndrome (TLS) in adults and children with malignant diseases: an expert TLS panel consensus. Br J Haematol 149: 578–586PubMedCrossRefGoogle Scholar
  215. 215.
    Will A, Tholouli E, (2011) The clinical management of tumour lysis syndrome in haematological malignancies. Br J Haematol 154: 3–13PubMedCrossRefGoogle Scholar
  216. 216.
    Druml W, (2005) Nutritional management of acute renal failure. J Ren Nutr 15: 63–70PubMedCrossRefGoogle Scholar
  217. 217.
    Fiaccadori E, Cremaschi E, Regolisti G, (2011) Nutritional assessment and delivery in renal replacement therapy patients. Semin Dial 24: 169–175PubMedCrossRefGoogle Scholar
  218. 218.
    Cano NJ, Aparicio M, Brunori G, Carrero JJ, Cianciaruso B, Fiaccadori E, Lindholm B, Teplan V, Fouque D, Guarnieri G, Espen, (2009) ESPEN Guidelines on parenteral nutrition: adult renal failure. Clin Nutr 28: 401–414PubMedCrossRefGoogle Scholar
  219. 219.
    Fiaccadori E, Parenti E, Maggiore U, (2008) Nutritional support in acute kidney injury. J Nephrol 21: 645–656PubMedGoogle Scholar
  220. 220.
    Bellomo R, Tan HK, Bhonagiri S, Gopal I, Seacombe J, Daskalakis M, Boyce N, (2002) High protein intake during continuous hemodiafiltration: impact on amino acids and nitrogen balance. Int J Artif Organs 25: 261–268PubMedCrossRefGoogle Scholar
  221. 221.
    Berger MM, Shenkin A, Revelly JP, Roberts E, Cayeux MC, Baines M, Chiolero RL, (2004) Copper, selenium, zinc, and thiamine balances during continuous venovenous hemodiafiltration in critically ill patients. Am J Clin Nutr 80: 410–416PubMedCrossRefGoogle Scholar
  222. 222.
    Mammen C, Al Abbas A, Skippen P, Nadel H, Levine D, Collet JP, Matsell DG, (2012) Long-term risk of CKD in children surviving episodes of acute kidney injury in the intensive care unit: a prospective cohort study. Am J Kidney Dis 59: 523–530PubMedCrossRefGoogle Scholar
  223. 223.
    Wald R, Quinn RR, Adhikari NK, Burns KE, Friedrich JO, Garg AX, Harel Z, Hladunewich MA, Luo J, Mamdani M, Perl J, Ray JG; University of Toronto Acute Kidney Injury Research G, (2012) Risk of chronic dialysis and death following acute kidney injury. Am J Med 125: 585–593PubMedCrossRefGoogle Scholar
  224. 224.
    Pannu N, James M, Hemmelgarn B, Klarenbach S; Alberta Kidney Disease Network, (2013) Association between AKI, recovery of renal function, and long-term outcomes after hospital discharge. Clin J Am Soc Nephrol 8: 194–202PubMedCrossRefGoogle Scholar
  225. 225.
    Harel Z, Wald R, Bargman JM, Mamdani M, Etchells E, Garg AX, Ray JG, Luo J, Li P, Quinn RR, Forster A, Perl J, Bell CM, (2013) Nephrologist follow-up improves all-cause mortality of severe acute kidney injury survivors. Kidney Int 83: 901–908PubMedCrossRefGoogle Scholar

Copyright information

© Société de réanimation de langue française (SRLF) et Lavoisier 2017

Authors and Affiliations

  • RFE commune SFAR—SRLF
  • Société française d’anesthésie et de réanimation
  • Société de réanimation de langue française
  • sociétés GFRUP, SFN
  • Groupe francophone de réanimation et urgences pédiatriques
  • Société française de néphrologie
  • C. Ichai
  • Christophe Vinsonneau
    • 1
  • B. Souweine
  • E. Canet
  • C. Clec’h
  • J.-M. Constantin
  • M. Darmon
  • J. Duranteau
  • T. Gaillot
  • A. Garnier
  • L. Jacob
  • O. Joannes-Boyau
  • L. Juillard
  • D. Journois
  • A. Lautrette
  • L. Müller
  • M. Legrand
  • N. Lerolle
  • T. Rimmelé
  • E. Rondeau
  • F. Tamion
  • L. Velly
  1. 1.Centre hospitalier de BéthuneBéthuneFrance

Personalised recommendations