Skip to main content
Log in

Insuffisance rénale aiguë en périopératoire et en réanimation (à l’exclusion des techniques d’épuration extrarénale)

Acute kidney injury in the perioperative period and in ICU (except for the extra-renal removal therapies)

  • Recommandations / Recommendations
  • Published:
Médecine Intensive Réanimation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. The Kidney Disease Improving Gloval Outcomes (KDIGO) Working Group, (2012) KDIGO clinical practice guideline for acute kidney injury. Kidney International Suppl 2: 1–138

  2. Hoste EA, Damen J, Vanholder RC, Lameire NH, Delanghe JR, Van den Hauwe K, Colardyn FA, (2005) Assessment of renal function in recently admitted critically ill patients with normal serum creatinine. Nephrol Dial Transplant 20: 747–753

    Article  CAS  PubMed  Google Scholar 

  3. Kellum JA, Lameire N, KDIGO AKI Guideline Work Group, (2013) Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Crit Care 17: 204

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P; Acute Dialysis Quality Initiative workgroup. Acute renal failure — definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 8: R204–212

  5. Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, Levin A, Acute Kidney Injury N, (2007) Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 11: R31

    Article  PubMed  PubMed Central  Google Scholar 

  6. Uchino S, Bellomo R, Goldsmith D, Bates S, Ronco C, (2006) An assessment of the RIFLE criteria for acute renal failure in hospitalized patients. Crit Care Med 34: 1913–1917

    Article  PubMed  Google Scholar 

  7. Hoste EA, Clermont G, Kersten A, Venkataraman R, Angus DC, De Bacquer D, Kellum JA, (2006) RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: a cohort analysis. Crit Care 10: R73

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bagshaw SM, George C, Dinu I, Bellomo R, (2008) A multi-centre evaluation of the RIFLE criteria for early acute kidney injury in critically ill patients. Nephrol Dial Transplant 23: 1203–1210

    Article  PubMed  Google Scholar 

  9. Joannidis M, Metnitz B, Bauer P, Schusterschitz N, Moreno R, Druml W, Metnitz PG, (2009) Acute kidney injury in critically ill patients classified by AKIN versus RIFLE using the SAPS 3 database. Intensive Care Med 35: 1692–1702

    Article  PubMed  Google Scholar 

  10. Coca SG, Singanamala S, Parikh CR, (2012) Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int 81: 442–448

    Article  PubMed  Google Scholar 

  11. Akcan-Arikan A, Zappitelli M, Loftis LL, Washburn KK, Jefferson LS, Goldstein SL, (2007) Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int 71: 1028–1035

    Article  CAS  PubMed  Google Scholar 

  12. Schwartz GJ, Brion LP, Spitzer A, (1987) The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents. Pediatr Clin North Am 34: 571–590

    Article  CAS  PubMed  Google Scholar 

  13. Plotz FB, Bouma AB, van Wijk JA, Kneyber MC, Bokenkamp A, (2008) Pediatric acute kidney injury in the ICU: an independent evaluation of pRIFLE criteria. Intensive Care Med 34: 1713–1717

    Article  PubMed  Google Scholar 

  14. Bonventre JV, Yang L, (2011) Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest 121: 4210–4221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bellomo R, Kellum JA, Ronco C, (2012) Acute kidney injury. Lancet 380: 756–766

    Article  PubMed  Google Scholar 

  16. Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW, (2005) Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol 16: 3365–3370

    Article  PubMed  Google Scholar 

  17. Wald R, Quinn RR, Luo J, Li P, Scales DC, Mamdani MM, Ray JG; University of Toronto Acute Kidney Injury Research G, (2009) Chronic dialysis and death among survivors of acute kidney injury requiring dialysis. JAMA 302: 1179–1185

    Article  CAS  PubMed  Google Scholar 

  18. Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo E, Gibney N, Tolwani A, Ronco C; Beginning, Ending Supportive Therapy for the Kidney, (2005) Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 294: 813–818

    Article  CAS  PubMed  Google Scholar 

  19. Waikar SS, Liu KD, Chertow GM, (2008) Diagnosis, epidemiology and outcomes of acute kidney injury. Clin J Am Soc Nephrol 3: 844–861

    Article  PubMed  Google Scholar 

  20. Nisula S, Kaukonen KM, Vaara ST, Korhonen AM, Poukkanen M, Karlsson S, Haapio M, Inkinen O, Parviainen I, Suojaranta-Ylinen R, Laurila JJ, Tenhunen J, Reinikainen M, Ala-Kokko T, Ruokonen E, Kuitunen A, Pettila V; Group FS, (2013) Incidence, risk factors and 90-day mortality of patients with acute kidney injury in Finnish intensive care units: the FINNAKI study. Intensive Care Med 39: 420–428

    Article  PubMed  Google Scholar 

  21. Vaara ST, Pettila V, Reinikainen M, Kaukonen KM, patients with acute kidney injury in Finnish intensive care units: the FINNAKI study, (2012) Population-based incidence, mortality and quality of life in critically ill patients treated with renal replacement therapy: a nationwide retrospective cohort study in Finnish intensive care units. Crit Care 16: R13

    Article  PubMed  PubMed Central  Google Scholar 

  22. Endre ZH, Pickering JW, Walker RJ, (2011) Clearance and beyond: the complementary roles of GFR measurement and injury biomarkers in acute kidney injury (AKI). Am J Physiol Renal Physiol 301: F697–707

    Article  CAS  PubMed  Google Scholar 

  23. Murray PT, Mehta RL, Shaw A, Ronco C, Endre Z, Kellum JA, Chawla LS, Cruz D, Ince C, Okusa MD; Workgroup A, (2014) Potential use of biomarkers in acute kidney injury: report and summary of recommendations from the 10th Acute Dialysis Quality Initiative consensus conference. Kidney Int 85: 513–521

    Article  PubMed  Google Scholar 

  24. Bihorac A, Kellum JA, (2015) Acute kidney injury in 2014: a step towards understanding mechanisms of renal repair. Nat Rev Nephrol 11: 74–75

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cruz DN, Mehta RL, (2014) Acute kidney injury in 2013: breaking barriers for biomarkers in AKI-progress at last. Nat Rev Nephrol 10: 74–76

    Article  CAS  PubMed  Google Scholar 

  26. Parikh CR, Devarajan P, (2008) New biomarkers of acute kidney injury. Crit Care Med 36: S159–165

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Z, Lu B, Sheng X, Jin N, (2011) Cystatin C in prediction of acute kidney injury: a systemic review and meta-analysis. Am J Kidney Dis 58: 356–365

    Article  CAS  PubMed  Google Scholar 

  28. Liu Y, Guo W, Zhang J, Xu C, Yu S, Mao Z, Wu J, Ye C, Mei C, Dai B, (2013) Urinary interleukin 18 for detection of acute kidney injury: a meta-analysis. Am J Kidney Dis 62: 1058–1067

    Article  CAS  PubMed  Google Scholar 

  29. Shao X, Tian L, Xu W, Zhang Z, Wang C, Qi C, Ni Z, Mou S, (2014) Diagnostic value of urinary kidney injury molecule 1 for acute kidney injury: a meta-analysis. PLoS One 9: e84131

    Article  CAS  Google Scholar 

  30. Haase M, Bellomo R, Devarajan P, Schlattmann P, Haase-Fielitz A; Group NM-aI, (2009) Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis 54: 1012–1024

    Article  CAS  PubMed  Google Scholar 

  31. Haase M, Devarajan P, Haase-Fielitz A, Bellomo R, Cruz DN, Wagener G, Krawczeski CD, Koyner JL, Murray P, Zappitelli M, Goldstein SL, Makris K, Ronco C, Martensson J, Martling CR, Venge P, Siew E, Ware LB, Ikizler TA, Mertens PR, (2011) The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies. J Am Coll Cardiol 57: 1752–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kashani K, Al-Khafaji A, Ardiles T, Artigas A, Bagshaw SM, Bell M, Bihorac A, Birkhahn R, Cely CM, Chawla LS, Davison DL, Feldkamp T, Forni LG, Gong MN, Gunnerson KJ, Haase M, Hackett J, Honore PM, Hoste EA, Joannes-Boyau O, Joannidis M, Kim P, Koyner JL, Laskowitz DT, Lissauer ME, Marx G, McCullough PA, Mullaney S, Ostermann M, Rimmele T, Shapiro NI, Shaw AD, Shi J, Sprague AM, Vincent JL, Vinsonneau C, Wagner L, Walker MG, Wilkerson RG, Zacharowski K, Kellum JA, (2013) Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care 17: R25

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bihorac A, Chawla LS, Shaw AD, Al-Khafaji A, Davison DL, Demuth GE, Fitzgerald R, Gong MN, Graham DD, Gunnerson K, Heung M, Jortani S, Kleerup E, Koyner JL, Krell K, Letourneau J, Lissauer M, Miner J, Nguyen HB, Ortega LM, Self WH, Sellman R, Shi J, Straseski J, Szalados JE, Wilber ST, Walker MG, Wilson J, Wunderink R, Zimmerman J, Kellum JA, (2014) Validation of cell-cycle arrest biomarkers for acute kidney injury using clinical adjudication. Am J Respir Crit Care Med 189: 932–939

    Article  CAS  PubMed  Google Scholar 

  34. McIlroy DR, Wagener G, Lee HT, (2010) Biomarkers of acute kidney injury: an evolving domain. Anesthesiology 112: 998–1004

    Article  PubMed  Google Scholar 

  35. Goldstein SL, (2012) Acute kidney injury in children and its potential consequences in adulthood. Blood Purif 33: 131–137

    Article  PubMed  Google Scholar 

  36. Schiffl H, Lang SM, (2013) Urinary biomarkers and acute kidney injury in children: the long road to clinical application. Pediatr Nephrol 28: 837–842

    Article  PubMed  Google Scholar 

  37. Ataei N, Bazargani B, Ameli S, Madani A, Javadilarijani F, Moghtaderi M, Abbasi A, Shams S, Ataei F, (2014) Early detection of acute kidney injury by serum cystatin C in critically ill children. Pediatr Nephrol 29: 133–138

    Article  PubMed  Google Scholar 

  38. Schnell D, Darmon M, (2012) Renal Doppler to assess renal perfusion in the critically ill: a reappraisal. Intensive Care Med 38: 1751–1760

    Article  PubMed  Google Scholar 

  39. Duranteau J, Deruddre S, Vigue B, Chemla D, (2008) Doppler monitoring of renal hemodynamics: why the best is yet to come. Intensive Care Med 34: 1360–1361

    Article  PubMed  Google Scholar 

  40. Wan L, Yang N, Hiew CY, Schelleman A, Johnson L, May C, Bellomo R, (2008) An assessment of the accuracy of renal blood flow estimation by Doppler ultrasound. Intensive Care Med 34: 1503–1510

    Article  PubMed  Google Scholar 

  41. Lauschke A, Teichgraber UK, Frei U, Eckardt KU, (2006) “Low-dose” dopamine worsens renal perfusion in patients with acute renal failure. Kidney Int 69: 1669–1674

    Article  CAS  PubMed  Google Scholar 

  42. Deruddre S, Cheisson G, Mazoit JX, Vicaut E, Benhamou D, Duranteau J, (2007) Renal arterial resistance in septic shock: effects of increasing mean arterial pressure with norepinephrine on the renal resistive index assessed with Doppler ultrasonography. Intensive Care Med 33: 1557–1562

    Article  PubMed  Google Scholar 

  43. Schnell D, Camous L, Guyomarc’h S, Duranteau J, Canet E, Gery P, Dumenil AS, Zeni F, Azoulay E, Darmon M, (2013) Renal perfusion assessment by renal Doppler during fluid challenge in sepsis. Crit Care Med 41: 1214–1220

    Article  PubMed  Google Scholar 

  44. Lerolle N, Guerot E, Faisy C, Bornstain C, Diehl JL, Fagon JY, (2006) Renal failure in septic shock: predictive value of Doppler-based renal arterial resistive index. Intensive Care Med 32: 1553–1559

    Article  PubMed  Google Scholar 

  45. Platt JF, Rubin JM, Ellis JH, (1991) Acute renal failure: possible role of duplex Doppler US in distinction between acute prerenal failure and acute tubular necrosis. Radiology 179: 419–423

    Article  CAS  PubMed  Google Scholar 

  46. Izumi M, Sugiura T, Nakamura H, Nagatoya K, Imai E, Hori M, (2000) Differential diagnosis of prerenal azotemia from acute tubular necrosis and prediction of recovery by Doppler ultrasound. Am J Kidney Dis 35: 713–719

    Article  CAS  PubMed  Google Scholar 

  47. Stevens PE, Gwyther SJ, Hanson ME, Boultbee JE, Kox WJ, Phillips ME, (1990) Noninvasive monitoring of renal blood flow characteristics during acute renal failure in man. Intensive Care Med 16: 153–158

    Article  CAS  PubMed  Google Scholar 

  48. Schnell D, Deruddre S, Harrois A, Pottecher J, Cosson C, Adoui N, Benhamou D, Vicaut E, Azoulay E, Duranteau J, (2012) Renal resistive index better predicts the occurrence of acute kidney injury than cystatin C. Shock 38: 592–597

    Article  CAS  PubMed  Google Scholar 

  49. Darmon M, Schortgen F, Vargas F, Liazydi A, Schlemmer B, Brun-Buisson C, Brochard L, (2011) Diagnostic accuracy of Doppler renal resistive index for reversibility of acute kidney injury in critically ill patients. Intensive Care Med 37: 68–76

    Article  PubMed  Google Scholar 

  50. Schnell D, Reynaud M, Venot M, Le Maho AL, Dinic M, Baulieu M, Ducos G, Terreaux J, Zeni F, Azoulay E, Meziani F, Duranteau J, Darmon M, (2014) Resistive Index or color-Doppler semi-quantitative evaluation of renal perfusion by inexperienced physicians: results of a pilot study. Minerva Anestesiol 80: 1273–1281

    CAS  PubMed  Google Scholar 

  51. Bossard G, Bourgoin P, Corbeau JJ, Huntzinger J, Beydon L, (2011) Early detection of postoperative acute kidney injury by Doppler renal resistive index in cardiac surgery with cardiopulmonary bypass. Br J Anaesth 107: 891–898

    Article  CAS  PubMed  Google Scholar 

  52. Dewitte A, Coquin J, Meyssignac B, Joannes-Boyau O, Fleureau C, Roze H, Ripoche J, Janvier G, Combe C, Ouattara A, (2012) Doppler resistive index to reflect regulation of renal vascular tone during sepsis and acute kidney injury. Crit Care 16: R165

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lerolle N, (2012) Please don’t call me RI anymore; I may not be the one you think I am! Crit Care 16: 174

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bude RO, Rubin JM, (1999) Relationship between the resistive index and vascular compliance and resistance. Radiology 211: 411–417

    Article  CAS  PubMed  Google Scholar 

  55. Murphy ME, Tublin ME, (2000) Understanding the Doppler RI: impact of renal arterial distensibility on the RI in a hydronephrotic ex vivo rabbit kidney model. J Ultrasound Med 19: 303–314

    Article  CAS  PubMed  Google Scholar 

  56. Tublin ME, Tessler FN, Murphy ME, (1999) Correlation between renal vascular resistance, pulse pressure, and the resistive index in isolated perfused rabbit kidneys. Radiology 213: 258–264

    Article  CAS  PubMed  Google Scholar 

  57. Naesens M, Heylen L, Lerut E, Claes K, De Wever L, Claus F, Oyen R, Kuypers D, Evenepoel P, Bammens B, Sprangers B, Meijers B, Pirenne J, Monbaliu D, de Jonge H, Metalidis C, De Vusser K, Vanrenterghem Y, (2013) Intrarenal resistive index after renal transplantation. N Engl J Med 369: 1797–1806

    Article  CAS  PubMed  Google Scholar 

  58. Huen SC, Parikh CR, (2012) Predicting acute kidney injury after cardiac surgery: a systematic review. Ann Thorac Surg 93: 337–347

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kheterpal S, Tremper KK, Heung M, Rosenberg AL, Englesbe M, Shanks AM, Campbell DA Jr, (2009) Development and validation of an acute kidney injury risk index for patients undergoing general surgery: results from a national data set. Anesthesiology 110: 505–515

    Article  PubMed  Google Scholar 

  60. Pannu N, Nadim MK, (2008) An overview of drug-induced acute kidney injury. Crit Care Med 36: S216–223

    Article  CAS  PubMed  Google Scholar 

  61. Bentley ML, Corwin HL, Dasta J, (2010) Drug-induced acute kidney injury in the critically ill adult: recognition and prevention strategies. Crit Care Med 38: S169–174

    Article  CAS  PubMed  Google Scholar 

  62. Annane D, Siami S, Jaber S, Martin C, Elatrous S, Declere AD, Preiser JC, Outin H, Troche G, Charpentier C, Trouillet JL, Kimmoun A, Forceville X, Darmon M, Lesur O, Reignier J, Abroug F, Berger P, Clec’h C, Cousson J, Thibault L, Chevret S; CRISTAL Investigators, (2013) Effects of fluid resuscitation with colloids versus crystalloids on mortality in critically ill patients presenting with hypovolemic shock: the CRISTAL randomized trial. JAMA 310: 1809–1817

    Article  CAS  PubMed  Google Scholar 

  63. Myburgh JA, Finfer S, Bellomo R, Billot L, Cass A, Gattas D, Glass P, Lipman J, Liu B, McArthur C, McGuinness S, Rajbhandari D, Taylor CB, Webb SA; CHEST Investigators; Australian and New Zealand Intensive Care Society Clinical Trials Group, (2012) N Engl J Med 367: 1901–1911

    Article  CAS  PubMed  Google Scholar 

  64. Haase N, Perner A, Hennings LI, Siegemund M, Lauridsen B, Wetterslev M, Wetterslev J, (2013) Hydroxyethyl starch 130/0.38-0.45 versus crystalloid or albumin in patients with sepsis: systematic review with meta-analysis and trial sequential analysis.BMJ 346: f839

    Article  PubMed  PubMed Central  Google Scholar 

  65. Perner A, Haase N, Guttormsen AB, Tenhunen J, Klemenzson G, Aneman A, Madsen KR, Moller MH, Elkjaer JM, Poulsen LM, Bendtsen A, Winding R, Steensen M, Berezowicz P, Soe-Jensen P, Bestle M, Strand K, Wiis J, White JO, Thornberg KJ, Quist L, Nielsen J, Andersen LH, Holst LB, Thormar K, Kjaeldgaard AL, Fabritius ML, Mondrup F, Pott FC, Moller TP, Winkel P, Wetterslev J; 6S Trial Group; Scandinavian Critical Care Trials Group, (2012) Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N Engl J Med 367: 124–134

    Article  CAS  PubMed  Google Scholar 

  66. Zarychanski R, Abou-Setta AM, Turgeon AF, Houston BL, McIntyre L, Marshall JC, Fergusson DA, (2013) Association of hydroxyethyl starch administration with mortality and acute kidney injury in critically ill patients requiring volume resuscitation: a systematic review and meta-analysis. JAMA 309: 678–688

    Article  CAS  PubMed  Google Scholar 

  67. Guidet B, Martinet O, Boulain T, Philippart F, Poussel JF, Maizel J, Forceville X, Feissel M, Hasselmann M, Heininger A, Van Aken H, (2012) Assessment of hemodynamic efficacy and safety of 6% hydroxyethylstarch 130/0.4 versus 0.9% NaCl fluid replacement in patients with severe sepsis: the CRYSTMAS study. Crit Care 16: R94

    Article  PubMed  PubMed Central  Google Scholar 

  68. Patel A, Waheed U, Brett SJ, (2013) Randomised trials of 6% tetrastarch (hydroxyethyl starch 130/0.4 or 0.42) for severe sepsis reporting mortality: systematic review and meta-analysis. Intensive Care Med 39: 811–822

    Article  CAS  PubMed  Google Scholar 

  69. Hartog CS, Reinhart K, (2012) CRYSTMAS study adds to concerns about renal safety and increased mortality in sepsis patients. Crit Care 16: 454; author reply 454

    Article  PubMed  PubMed Central  Google Scholar 

  70. Brunkhorst FM, Engel C, Bloos F, Meier-Hellmann A, Ragaller M, Weiler N, Moerer O, Gruendling M, Oppert M, Grond S, Olthoff D, Jaschinski U, John S, Rossaint R, Welte T, Schaefer M, Kern P, Kuhnt E, Kiehntopf M, Hartog C, Natanson C, Loeffler M, Reinhart K; German Competence Network S, (2008) Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med 358: 125–139

    Article  CAS  PubMed  Google Scholar 

  71. Schortgen F, Lacherade JC, Bruneel F, Cattaneo I, Hemery F, Lemaire F, Brochard L, (2001) Effects of hydroxyethylstarch and gelatin on renal function in severe sepsis: a multicentre randomised study. Lancet 357: 911–916

    Article  CAS  PubMed  Google Scholar 

  72. Perel P, Roberts I, Ker K, (2013) Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev: CD000567

  73. Mutter TC, Ruth CA, Dart AB, (2013) Hydroxyethyl starch (HES) versus other fluid therapies: effects on kidney function. Cochrane Database Syst Rev: CD007594

  74. Martin C, Jacob M, Vicaut E, Guidet B, Van Aken H, Kurz A, (2013) Effect of waxy maize-derived hydroxyethyl starch 130/0.4 on renal function in surgical patients. Anesthesiology 118: 387–394

    Article  CAS  PubMed  Google Scholar 

  75. The European Medicines Agency’s Pharmacovigilance Risk Assessment Committee, (2015) Hydroxyethyl-starch solutions (HES) should no longer be used in patients with sepsis or burn injuries or in critically ill patients. http://www.ema.europa.eu/ema/index.jsp?curl=pages/news_and_events/news/2013/10/ news_ detail_001917. (Accessed: January 27th, 2016)

  76. Kurtz TW, Morris RC Jr, (1983) Dietary chloride as a determinant of “sodium-dependent” hypertension. Science 222: 1139–1141

    Article  CAS  PubMed  Google Scholar 

  77. Wilcox CS, (1983) Regulation of renal blood flow by plasma chloride. J Clin Invest 71: 726–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hansen PB, Jensen BL, Skott O, (1998) Chloride regulates afferent arteriolar contraction in response to depolarization. Hypertension 32: 1066–1070

    Article  CAS  PubMed  Google Scholar 

  79. Chowdhury AH, Cox EF, Francis ST, Lobo DN, (2012) A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and plasma-lyte® 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann Surg 256: 18–24

    Article  PubMed  Google Scholar 

  80. Lobo DN, Awad S, (2014) Should chloride-rich crystalloids remain the mainstay of fluid resuscitation to prevent “pre-renal” acute kidney injury?: con. Kidney Int 86: 1096–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yunos NM, Kim IB, Bellomo R, Bailey M, Ho L, Story D, Gutteridge GA, Hart GK, (2011) The biochemical effects of restricting chloride-rich fluids in intensive care. Crit Care Med 39: 2419–2424

    Article  CAS  PubMed  Google Scholar 

  82. Shaw AD, Bagshaw SM, Goldstein SL, Scherer LA, Duan M, Schermer CR, Kellum JA, (2012) Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to Plasma-Lyte. Ann Surg 255: 821–829

    Article  PubMed  Google Scholar 

  83. Yunos NM, Bellomo R, Hegarty C, Story D, Ho L, Bailey M, (2012) Association between a chloride-liberal versus chloriderestrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA 308: 1566–1572

    Article  CAS  PubMed  Google Scholar 

  84. McCluskey SA, Karkouti K, Wijeysundera D, Minkovich L, Tait G, Beattie WS, (2013) Hyperchloremia after noncardiac surgery is independently associated with increased morbidity and mortality: a propensity-matched cohort study. Anesth Analg 117: 412–421

    Article  PubMed  Google Scholar 

  85. Raghunathan K, Shaw A, Nathanson B, Sturmer T, Brookhart A, Stefan MS, Setoguchi S, Beadles C, Lindenauer PK, (2014) Association between the choice of IV crystalloid and in-hospital mortality among critically ill adults with sepsis. Crit Care Med 42: 1585–1591

    Article  CAS  PubMed  Google Scholar 

  86. Krajewski ML, Raghunathan K, Paluszkiewicz SM, Schermer CR, Shaw AD, (2015) Meta-analysis of highversus low-chloride content in perioperative and critical care fluid resuscitation. Br J Surg 102: 24–36

    Article  CAS  PubMed  Google Scholar 

  87. Raghunathan K, Murray PT, Beattie WS, Lobo DN, Myburgh J, Sladen R, Kellum JA, Mythen MG, Shaw AD; Group AXI, (2014) Choice of fluid in acute illness: what should be given? An international consensus. Br J Anaesth 113: 772–783

    Article  CAS  PubMed  Google Scholar 

  88. Antonelli M, Levy M, Andrews PJ, Chastre J, Hudson LD, Manthous C, Meduri GU, Moreno RP, Putensen C, Stewart T, Torres A, (2007) Hemodynamic monitoring in shock and implications for management. International Consensus Conference, Paris, France, 27–28 April 2006. Intensive Care Med 33: 575–590

    PubMed  Google Scholar 

  89. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb S, Beale RJ, Vincent JL, Moreno R; Surviving Sepsis Campaign Guidelines Committee including The Pediatric S, (2013) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med 39: 165–228

    Article  CAS  PubMed  Google Scholar 

  90. Varpula M, Tallgren M, Saukkonen K, Voipio-Pulkki LM, Pettila V, (2005) Hemodynamic variables related to outcome in septic shock. Intensive Care Med 31: 1066–1071

    Article  PubMed  Google Scholar 

  91. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M; Early Goal-Directed Therapy Collaborative Group, (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345: 1368–1377

    Article  CAS  PubMed  Google Scholar 

  92. Poukkanen M, Wilkman E, Vaara ST, Pettila V, Kaukonen KM, Korhonen AM, Uusaro A, Hovilehto S, Inkinen O, Laru-Sompa R, Hautamaki R, Kuitunen A, Karlsson S; FINNAKI Study Group, (2013) Hemodynamic variables and progression of acute kidney injury in critically ill patients with severe sepsis: data from the prospective observational FINNAKI study. Crit Care 17: R295

    Article  PubMed  PubMed Central  Google Scholar 

  93. Asfar P, Meziani F, Hamel JF, Grelon F, Megarbane B, Anguel N, Mira JP, Dequin PF, Gergaud S, Weiss N, Legay F, Le Tulzo Y, Conrad M, Robert R, Gonzalez F, Guitton C, Tamion F, Tonnelier JM, Guezennec P, Van Der Linden T, Vieillard-Baron A, Mariotte E, Pradel G, Lesieur O, Ricard JD, Herve F, du Cheyron D, Guerin C, Mercat A, Teboul JL, Radermacher P; SEPSISPAM Investigators, (2014) High versus low blood-pressure target in patients with septic shock. N Engl J Med 370: 1583–1593

    Article  CAS  PubMed  Google Scholar 

  94. Bourgoin A, Leone M, Delmas A, Garnier F, Albanese J, Martin C, (2005) Increasing mean arterial pressure in patients with septic shock: effects on oxygen variables and renal function. Crit Care Med 33: 780–786

    Article  CAS  PubMed  Google Scholar 

  95. LeDoux D, Astiz ME, Carpati CM, Rackow EC, (2000) Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med 28: 2729–2732

    Article  CAS  PubMed  Google Scholar 

  96. Dunser MW, Takala J, Ulmer H, Mayr VD, Luckner G, Jochberger S, Daudel F, Lepper P, Hasibeder WR, Jakob SM, (2009) Arterial blood pressure during early sepsis and outcome. Intensive Care Med 35: 1225–1233

    Article  PubMed  Google Scholar 

  97. Benchekroune S, Karpati PC, Berton C, Nathan C, Mateo J, Chaara M, Riche F, Laisne MJ, Payen D, Mebazaa A, (2008) Diastolic arterial blood pressure: a reliable early predictor of survival in human septic shock. J Trauma 64: 1188–1195

    Article  PubMed  Google Scholar 

  98. Legrand M, Dupuis C, Simon C, Gayat E, Mateo J, Lukaszewicz AC, Payen D, (2013) Association between systemic hemodynamics and septic acute kidney injury in critically ill patients: a retrospective observational study. Crit Care 17: R278

    Article  PubMed  PubMed Central  Google Scholar 

  99. Walsh M, Devereaux PJ, Garg AX, Kurz A, Turan A, Rodseth RN, Cywinski J, Thabane L, Sessler DI, (2013) Relationship between intraoperative mean arterial pressure and clinical outcomes after noncardiac surgery: toward an empirical definition of hypotension. Anesthesiology 119: 507–515

    Article  PubMed  Google Scholar 

  100. Haase M, Bellomo R, Story D, Letis A, Klemz K, Matalanis G, Seevanayagam S, Dragun D, Seeliger E, Mertens PR, HaaseFielitz A, (2012) Effect of mean arterial pressure, haemoglobin and blood transfusion during cardiopulmonary bypass on post-operative acute kidney injury. Nephrol Dial Transplant 27: 153–160

    Article  CAS  PubMed  Google Scholar 

  101. Kanji HD, Schulze CJ, Hervas-Malo M, Wang P, Ross DB, Zibdawi M, Bagshaw SM, (2010) Difference between pre-operative and cardiopulmonary bypass mean arterial pressure is independently associated with early cardiac surgery-associated acute kidney injury. J Cardiothorac Surg 5: 71

    Article  PubMed  PubMed Central  Google Scholar 

  102. Brienza N, Giglio MT, Marucci M, Fiore T, (2009) Does perioperative hemodynamic optimization protect renal function in surgical patients? A meta-analytic study. Crit Care Med 37: 2079–2090

    Article  PubMed  Google Scholar 

  103. Grocott MP, Dushianthan A, Hamilton MA, Mythen MG, Harrison D, Rowan K; Optimisation Systematic Review Steering Group, (2013) Perioperative increase in global blood flow to explicit defined goals and outcomes after surgery: a Cochrane systematic review. Br J Anaesth 111: 535–548

    Article  CAS  PubMed  Google Scholar 

  104. Bouchard J, Soroko SB, Chertow GM, Himmelfarb J, Ikizler TA, Paganini EP, Mehta RL; Program to Improve Care in Acute Renal Disease Study Group, (2009) Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int 76: 422–427

    Article  PubMed  Google Scholar 

  105. Payen D, de Pont AC, Sakr Y, Spies C, Reinhart K, Vincent JL; Sepsis Occurrence in Acutely Ill Patients I, (2008) A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care 12: R74

    Article  PubMed  PubMed Central  Google Scholar 

  106. Teixeira C, Garzotto F, Piccinni P, Brienza N, Iannuzzi M, Gramaticopolo S, Forfori F, Pelaia P, Rocco M, Ronco C, Anello CB, Bove T, Carlini M, Michetti V, Cruz DN; NEFROlogia e Cura INTensiva (NEFROINT) investigators, (2013) Fluid balance and urine volume are independent predictors of mortality in acute kidney injury. Crit Care 17: R14

    Article  PubMed  PubMed Central  Google Scholar 

  107. Grams ME, Estrella MM, Coresh J, Brower RG, Liu KD, National Heart L; Blood Institute Acute Respiratory Distress Syndrome N, (2011) Fluid balance, diuretic use, and mortality in acute kidney injury. Clin J Am Soc Nephrol 6: 966–973

    Article  PubMed  PubMed Central  Google Scholar 

  108. RENAL Replacement Therapy Study Investigators, Bellomo R, Cass A, Cole L, Finfer S, Gallagher M, Lee J, Lo S, McArthur C, McGuiness S, Norton R, Myburgh J, Scheinkestel C, Su S, (2012) An observational study fluid balance and patient outcomes in the randomized evaluation of normal versus augmented level of replacement therapy trial. Crit Care Med 40: 1753–1760

    Article  Google Scholar 

  109. Boland MR, Noorani A, Varty K, Coffey JC, Agha R, Walsh SR, (2013) Perioperative fluid restriction in major abdominal surgery: systematic review and meta-analysis of randomized, clinical trials. World J Surg 37: 1193–1202

    Article  PubMed  Google Scholar 

  110. Varadhan KK, Lobo DN, (2010) A meta-analysis of randomised controlled trials of intravenous fluid therapy in major elective open abdominal surgery: getting the balance right. Proc Nutr Soc 69: 488–498

    Article  PubMed  Google Scholar 

  111. Desjars P, Pinaud M, Bugnon D, Tasseau F, (1989) Norepinephrine therapy has no deleterious renal effects in human septic shock. Crit Care Med 17: 426–429

    Article  CAS  PubMed  Google Scholar 

  112. Desjars P, Pinaud M, Potel G, Tasseau F, Touze MD, (1987) A reappraisal of norepinephrine therapy in human septic shock. Crit Care Med 15: 134–137

    Article  CAS  PubMed  Google Scholar 

  113. Fukuoka T, Nishimura M, Imanaka H, Taenaka N, Yoshiya I, Takezawa J, (1989) Effects of norepinephrine on renal function in septic patients with normal and elevated serum lactate levels. Crit Care Med 17: 1104–1107

    Article  CAS  PubMed  Google Scholar 

  114. Martin C, Viviand X, Leone M, Thirion X, (2000) Effect of norepinephrine on the outcome of septic shock. Crit Care Med 28: 2758–2765

    Article  CAS  PubMed  Google Scholar 

  115. Redl-Wenzl EM, Armbruster C, Edelmann G, Fischl E, Kolacny M, Wechsler-Fordos A, Sporn P, (1990) Noradrenaline in the “high output-low resistance” state of patients with abdominal sepsis. Anaesthesist 39: 525–529

    CAS  PubMed  Google Scholar 

  116. Albanese J, Leone M, Garnier F, Bourgoin A, Antonini F, Martin C, (2004) Renal effects of norepinephrine in septic and nonseptic patients. Chest 126: 534–539

    Article  CAS  PubMed  Google Scholar 

  117. Martin C, Papazian L, Perrin G, Saux P, Gouin F, (1993) Norepinephrine or dopamine for the treatment of hyperdynamic septic shock? Chest 103: 1826–1831

    Article  CAS  PubMed  Google Scholar 

  118. Leone M, Albanese J, Delmas A, Chaabane W, Garnier F, Martin C, (2004) Terlipressin in catecholamine-resistant septic shock patients. Shock 22: 314–319

    Article  CAS  PubMed  Google Scholar 

  119. Albanese J, Leone M, Delmas A, Martin C, (2005) Terlipressin or norepinephrine in hyperdynamic septic shock: a prospective, randomized study. Crit Care Med 33: 1897–1902

    Article  CAS  PubMed  Google Scholar 

  120. Rihal CS, Textor SC, Grill DE, Berger PB, Ting HH, Best PJ, Singh M, Bell MR, Barsness GW, Mathew V, Garratt KN, Holmes DR Jr., (2002) Incidence and prognostic importance of acute renal failure after percutaneous coronary intervention. Circulation 105: 2259–2264

    Article  PubMed  Google Scholar 

  121. Rudnick MR, Goldfarb S, Tumlin J, (2008) Contrast-induced nephropathy: is the picture any clearer? Clin J Am Soc Nephrol 3: 261–262

    Article  PubMed  Google Scholar 

  122. Hoste EA, Doom S, De Waele J, Delrue LJ, Defreyne L, Benoit DD, Decruyenaere J, (2011) Epidemiology of contrastassociated acute kidney injury in ICU patients: a retrospective cohort analysis. Intensive Care Med 37: 1921–1931

    Article  PubMed  Google Scholar 

  123. Chousterman BG, Bouadma L, Moutereau S, Loric S, AlvarezGonzalez A, Mekontso-Dessap A, Laissy JP, Rahmouni A, Katsahian S, Brochard L, Schortgen F, (2013) Prevention of contrast-induced nephropathy by N-acetylcysteine in critically ill patients: different definitions, different results. J Crit Care 28: 701–709

    Article  CAS  PubMed  Google Scholar 

  124. Valette X, Savary B, Nowoczyn M, Daubin C, Pottier V, Terzi N, Seguin A, Fradin S, Charbonneau P, Hanouz JL, du Cheyron D, (2013) Accuracy of plasma neutrophil gelatinase-associated lipocalin in the early diagnosis of contrast-induced acute kidney injury in critical illness. Intensive Care Med 39: 857–865

    Article  CAS  PubMed  Google Scholar 

  125. Clec’h C, Razafimandimby D, Laouisset M, Chemouni F, Cohen Y, (2013) Incidence and outcome of contrast-associated acute kidney injury in a mixed medical-surgical ICU population: a retrospective study. BMC Nephrol 14: 31

    Article  PubMed  PubMed Central  Google Scholar 

  126. Brar SS, Hiremath S, Dangas G, Mehran R, Brar SK, Leon MB, (2009) Sodium bicarbonate for the prevention of contrast induced-acute kidney injury: a systematic review and metaanalysis. Clin J Am Soc Nephrol 4: 1584–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zoungas S, Ninomiya T, Huxley R, Cass A, Jardine M, Gallagher M, Patel A, Vasheghani-Farahani A, Sadigh G, Perkovic V, (2009) Systematic review: sodium bicarbonate treatment regimens for the prevention of contrast-induced nephropathy. Ann Intern Med 151: 631–638

    Article  PubMed  Google Scholar 

  128. Brown JR, Block CA, Malenka DJ, O’Connor GT, Schoolwerth AC, Thompson CA, (2009) Sodium bicarbonate plus N-acetylcysteine prophylaxis: a meta-analysis. JACC Cardiovasc Interv 2: 1116–1124

    Article  PubMed  Google Scholar 

  129. Sun Z, Fu Q, Cao L, Jin W, Cheng L, Li Z, (2013) Intravenous N-acetylcysteine for prevention of contrast-induced nephropathy: a meta-analysis of randomized, controlled trials. PLoS One 8: e55124

    Article  CAS  Google Scholar 

  130. Jang JS, Jin HY, Seo JS, Yang TH, Kim DK, Kim TH, Urm SH, Kim DS, Kim DK, Seol SH, Kim DI, Cho KI, Kim BH, Park YH, Je HG, Ahn JM, Kim WJ, Lee JY, Lee SW, (2012) Sodium bicarbonate therapy for the prevention of contrast-induced acute kidney injury — a systematic review and meta-analysis. Circ J 76: 2255–2265

    Article  CAS  PubMed  Google Scholar 

  131. Solomon R, Werner C, Mann D, D’Elia J, Silva P, (1994) Effects of saline, mannitol, and furosemide on acute decreases in renal function induced by radiocontrast agents. N Engl J Med 331: 1416–1420

    Article  CAS  PubMed  Google Scholar 

  132. Vaitkus PT, Brar C, (2007) N-acetylcysteine in the prevention of contrast-induced nephropathy: publication bias perpetuated by meta-analyses. Am Heart J 153: 275–280

    Article  CAS  PubMed  Google Scholar 

  133. Hoste EA, De Waele JJ, Gevaert SA, Uchino S, Kellum JA, (2010) Sodium bicarbonate for prevention of contrast-induced acute kidney injury: a systematic review and meta-analysis. Nephrol Dial Transplant 25: 747–758

    Article  CAS  PubMed  Google Scholar 

  134. Klima T, Christ A, Marana I, Kalbermatter S, Uthoff H, Burri E, Hartwiger S, Schindler C, Breidthardt T, Marenzi G, Mueller C, (2012) Sodium chloride versus sodium bicarbonate for the prevention of contrast medium-induced nephropathy: a randomized controlled trial. Eur Heart J 33: 2071–2079

    Article  CAS  PubMed  Google Scholar 

  135. Kooiman J, Sijpkens YW, de Vries JP, Brulez HF, Hamming JF, van der Molen AJ, Aarts NJ, Cannegieter SC, Putter H, Swarts R, van den Hout WB, Rabelink TJ, Huisman MV, (2014) A randomized comparison of 1-h sodium bicarbonate hydration versus standard peri-procedural saline hydration in patients with chronic kidney disease undergoing intravenous contrast-enhanced computerized tomography. Nephrol Dial Transplant 29: 1029–1036

    Article  CAS  PubMed  Google Scholar 

  136. Pattharanitima P, Tasanarong A, (2014) Pharmacological strategies to prevent contrast-induced acute kidney injury. Biomed Res Int 2014: 236930

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Kelly AM, Dwamena B, Cronin P, Bernstein SJ, Carlos RC, (2008) Meta-analysis: effectiveness of drugs for preventing contrast-induced nephropathy. Ann Intern Med 148: 284–294

    Article  PubMed  Google Scholar 

  138. McCullough PA, (2008) Radiocontrast-induced acute kidney injury. Nephron Physiol 109: 61–72

    Article  CAS  Google Scholar 

  139. Kellum JA, Leblanc M, Venkataraman R, (2008) Acute renal failure. BMJ Clin Evid pii: 2001

    Google Scholar 

  140. Rybak MJ, Abate BJ, Kang SL, Ruffing MJ, Lerner SA, Drusano GL, (1999) Prospective evaluation of the effect of an aminoglycoside dosing regimen on rates of observed nephrotoxicity and ototoxicity. Antimicrob Agents Chemother 43: 1549–1555

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Bailey TC, Little JR, Littenberg B, Reichley RM, Dunagan WC, (1997) A meta-analysis of extended-interval dosing versus multiple daily dosing of aminoglycosides. Clin Infect Dis 24: 786–795

    Article  CAS  PubMed  Google Scholar 

  142. Hatala R, Dinh T, Cook DJ, (1996) Once-daily aminoglycoside dosing in immunocompetent adults: a meta-analysis. Ann Intern Med 124: 717–725

    Article  CAS  PubMed  Google Scholar 

  143. Wargo KA, Edwards JD, (2014) Aminoglycoside-induced nephrotoxicity. J Pharm Pract 27: 573–577

    Article  PubMed  Google Scholar 

  144. Picard W, Bazin F, Clouzeau B, Bui HN, Soulat M, Guilhon E, Vargas F, Hilbert G, Bouchet S, Gruson D, Moore N, Boyer A, (2014) Propensity-based study of aminoglycoside nephrotoxicity in patients with severe sepsis or septic shock. Antimicrob Agents Chemother 58: 7468–7474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Boyer A, Gruson D, Bouchet S, Clouzeau B, Hoang-Nam B, Vargas F, Gilles H, Molimard M, Rogues AM, Moore N, (2013) Aminoglycosides in septic shock: an overview, with specific consideration given to their nephrotoxic risk. Drug Saf 36: 217–230

    Article  CAS  PubMed  Google Scholar 

  146. Croes S, Koop AH, van Gils SA, Neef C, (2012) Efficacy, nephrotoxicity and ototoxicity of aminoglycosides, mathematically modelled for modelling-supported therapeutic drug monitoring. Eur J Pharm Sci 45: 90–100

    Article  CAS  PubMed  Google Scholar 

  147. Pagkalis S, Mantadakis E, Mavros MN, Ammari C, Falagas ME, (2011) Pharmacological considerations for the proper clinical use of aminoglycosides. Drugs 71: 2277–2294

    Article  CAS  PubMed  Google Scholar 

  148. Oliveira JF, Silva CA, Barbieri CD, Oliveira GM, Zanetta DM, Burdmann EA, (2009) Prevalence and risk factors for aminoglycoside nephrotoxicity in intensive care units. Antimicrob Agents Chemother 53: 2887–2891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Selby NM, Shaw S, Woodier N, Fluck RJ, Kolhe NV, (2009) Gentamicin-associated acute kidney injury. QJM 102: 873–880

    Article  CAS  PubMed  Google Scholar 

  150. Bartal C, Danon A, Schlaeffer F, Reisenberg K, Alkan M, Smoliakov R, Sidi A, Almog Y, (2003) Pharmacokinetic dosing of aminoglycosides: a controlled trial. Am J Med 114: 194–198

    Article  CAS  PubMed  Google Scholar 

  151. Perazella MA, (2012) Drug use and nephrotoxicity in the intensive care unit. Kidney Int 81: 1172–1178

    Article  CAS  PubMed  Google Scholar 

  152. Papadopoulos J, Smithburger PL, (2010) Common drug interactions leading to adverse drug events in the intensive care unit: management and pharmacokinetic considerations. Crit Care Med 38: S126–135

    Article  CAS  PubMed  Google Scholar 

  153. Schetz M, Dasta J, Goldstein S, Golper T, (2005) Drug-induced acute kidney injury. Curr Opin Crit Care 11: 555–565

    Article  PubMed  Google Scholar 

  154. Ho KM, Power BM, (2010) Benefits and risks of furosemide in acute kidney injury. Anaesthesia 65: 283–293

    Article  CAS  PubMed  Google Scholar 

  155. Ho KM, Sheridan DJ, (2006) Meta-analysis of frusemide to prevent or treat acute renal failure. BMJ 333: 420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Haase M, Haase-Fielitz A, Plass M, Kuppe H, Hetzer R, Hannon C, Murray PT, Bailey MJ, Bellomo R, Bagshaw SM, (2013) Prophylactic perioperative sodium bicarbonate to prevent acute kidney injury following open heart surgery: a multicenter double-blinded randomized controlled trial. PLoS Med 10: e1001426

    Article  CAS  Google Scholar 

  157. Kristeller JL, Zavorsky GS, Prior JE, Keating DA, Brady MA, Romaldini TA, Hickman TL, Stahl RF, (2013) Lack of effectiveness of sodium bicarbonate in preventing kidney injury in patients undergoing cardiac surgery: a randomized controlled trial. Pharmacotherapy 33: 710–717

    Article  CAS  PubMed  Google Scholar 

  158. McGuinness SP, Parke RL, Bellomo R, Van Haren FM, Bailey M, (2013) Sodium bicarbonate infusion to reduce cardiac surgery-associated acute kidney injury: a phase II multicenter double-blind randomized controlled trial. Crit Care Med 41: 1599–1607

    Article  CAS  PubMed  Google Scholar 

  159. Hewitt J, Uniacke M, Hansi NK, Venkat-Raman G, McCarthy K, (2012) Sodium bicarbonate supplements for treating acute kidney injury. Cochrane Database Syst Rev: CD009204

    Google Scholar 

  160. Bosch X, Poch E, Grau JM, (2009) Rhabdomyolysis and acute kidney injury. N Engl J Med 361: 62–72

    Article  CAS  PubMed  Google Scholar 

  161. Chatzizisis YS, Misirli G, Hatzitolios AI, Giannoglou GD, (2008) The syndrome of rhabdomyolysis: complications and treatment. Eur J Intern Med 19: 568–574

    Article  PubMed  Google Scholar 

  162. Scharman EJ, Troutman WG, (2013) Prevention of kidney injury following rhabdomyolysis: a systematic review. Ann Pharmacother 47: 90–105

    Article  PubMed  Google Scholar 

  163. Shimazu T, Yoshioka T, Nakata Y, Ishikawa K, Mizushima Y, Morimoto F, Kishi M, Takaoka M, Tanaka H, Iwai A, Hiraide A, (1997) Fluid resuscitation and systemic complications in crush syndrome: 14 Hanshin-Awaji earthquake patients. J Trauma 42: 641–646

    Article  CAS  PubMed  Google Scholar 

  164. Gunal AI, Celiker H, Dogukan A, Ozalp G, Kirciman E, Simsekli H, Gunay I, Demircin M, Belhan O, Yildirim MA, Sever MS, (2004) Early and vigorous fluid resuscitation prevents acute renal failure in the crush victims of catastrophic earthquakes. J Am Soc Nephrol 15: 1862–1867

    Article  PubMed  Google Scholar 

  165. Homsi E, Barreiro MF, Orlando JM, Higa EM, (1997) Prophylaxis of acute renal failure in patients with rhabdomyolysis. Ren Fail 19: 283–288

    Article  CAS  PubMed  Google Scholar 

  166. Brown CV, Rhee P, Chan L, Evans K, Demetriades D, Velmahos GC, (2004) Preventing renal failure in patients with rhabdomyolysis: do bicarbonate and mannitol make a difference? J Trauma 56: 1191–1196

    Article  PubMed  Google Scholar 

  167. Cho YS, Lim H, Kim SH, (2007) Comparison of lactated Ringer’s solution and 0.9% saline in the treatment of rhabdomyolysis induced by doxylamine intoxication. Emerg Med J 24: 276–280

    Article  PubMed  PubMed Central  Google Scholar 

  168. Yallop KG, Sheppard SV, Smith DC, (2008) The effect of mannitol on renal function following cardio-pulmonary bypass in patients with normal pre-operative creatinine. Anaesthesia 63: 576–582

    Article  CAS  PubMed  Google Scholar 

  169. Smith MN, Best D, Sheppard SV, Smith DC, (2008) The effect of mannitol on renal function after cardiopulmonary bypass in patients with established renal dysfunction. Anaesthesia 63: 701–704

    Article  CAS  PubMed  Google Scholar 

  170. Majumdar SR, Kjellstrand CM, Tymchak WJ, Hervas-Malo M, Taylor DA, Teo KK, (2009) Forced euvolemic diuresis with mannitol and furosemide for prevention of contrast-induced nephropathy in patients with CKD undergoing coronary angiography: a randomized controlled trial. Am J Kidney Dis 54: 602–609

    Article  CAS  PubMed  Google Scholar 

  171. Friedrich JO, Adhikari N, Herridge MS, Beyene J, (2005) Meta-analysis: low-dose dopamine increases urine output but does not prevent renal dysfunction or death. Ann Intern Med 142: 510–524

    Article  CAS  PubMed  Google Scholar 

  172. Kellum JA, J MD, (2001) Use of dopamine in acute renal failure: a meta-analysis. Crit Care Med 29: 1526–1531

    Article  CAS  PubMed  Google Scholar 

  173. Bellomo R, Chapman M, Finfer S, Hickling K, Myburgh J, (2000) Low-dose dopamine in patients with early renal dysfunction: a placebo-controlled randomised trial. Australian and New Zealand Intensive Care Society (ANZICS) Clinical Trials Group. Lancet 356: 2139–2143

    CAS  PubMed  Google Scholar 

  174. Stone GW, McCullough PA, Tumlin JA, Lepor NE, Madyoon H, Murray P, Wang A, Chu AA, Schaer GL, Stevens M, Wilensky RL, O’Neill WW, Investigators C, (2003) Fenoldopam mesylate for the prevention of contrast-induced nephropathy: a randomized controlled trial. JAMA 290: 2284–2291

    Article  CAS  PubMed  Google Scholar 

  175. Caimmi PP, Pagani L, Micalizzi E, Fiume C, Guani S, Bernardi M, Parodi F, Cordero G, Fregonara M, Kapetanakis E, Panella M, Degasperis C, (2003) Fenoldopam for renal protection in patients undergoing cardiopulmonary bypass. J Cardiothorac Vasc Anesth 17: 491–494

    Article  PubMed  Google Scholar 

  176. Bove T, Landoni G, Calabro MG, Aletti G, Marino G, Cerchierini E, Crescenzi G, Zangrillo A, (2005) Renoprotective action of fenoldopam in high-risk patients undergoing cardiac surgery: a prospective, double-blind, randomized clinical trial. Circulation 111: 3230–3235

    Article  CAS  PubMed  Google Scholar 

  177. Brienza N, Malcangi V, Dalfino L, Trerotoli P, Guagliardi C, Bortone D, Faconda G, Ribezzi M, Ancona G, Bruno F, Fiore T, (2006) A comparison between fenoldopam and low-dose dopamine in early renal dysfunction of critically ill patients. Crit Care Med 34: 707–714

    Article  CAS  PubMed  Google Scholar 

  178. Ranucci M, Soro G, Barzaghi N, Locatelli A, Giordano G, Vavassori A, Manzato A, Melchiorri C, Bove T, Juliano G, Uslenghi MF, (2004) Fenoldopam prophylaxis of postoperative acute renal failure in high-risk cardiac surgery patients. Ann Thorac Surg 78: 1332–1337; discussion 1337–1338

    Article  PubMed  Google Scholar 

  179. Tumlin JA, Finkel KW, Murray PT, Samuels J, Cotsonis G, Shaw AD, (2005) Fenoldopam mesylate in early acute tubular necrosis: a randomized, double-blind, placebo-controlled clinical trial. Am J Kidney Dis 46: 26–34

    Article  CAS  PubMed  Google Scholar 

  180. Morelli A, Ricci Z, Bellomo R, Ronco C, Rocco M, Conti G, De Gaetano A, Picchini U, Orecchioni A, Portieri M, Coluzzi F, Porzi P, Serio P, Bruno A, Pietropaoli P, (2005) Prophylactic fenoldopam for renal protection in sepsis: a randomized, double-blind, placebo-controlled pilot trial. Crit Care Med 33: 2451–2456

    Article  CAS  PubMed  Google Scholar 

  181. Patel NN, Rogers CA, Angelini GD, Murphy GJ, (2011) Pharmacological therapies for the prevention of acute kidney injury following cardiac surgery: a systematic review. Heart Fail Rev 16: 553–567

    Article  CAS  PubMed  Google Scholar 

  182. Landoni G, Biondi-Zoccai GG, Marino G, Bove T, Fochi O, Maj G, Calabro MG, Sheiban I, Tumlin JA, Ranucci M, Zangrillo A, (2008) Fenoldopam reduces the need for renal replacement therapy and in-hospital death in cardiovascular surgery: a meta-analysis. J Cardiothorac Vasc Anesth 22: 27–33

    Article  CAS  PubMed  Google Scholar 

  183. Landoni G, Biondi-Zoccai GG, Tumlin JA, Bove T, De Luca M, Calabro MG, Ranucci M, Zangrillo A, (2007) Beneficial impact of fenoldopam in critically ill patients with or at risk for acute renal failure: a meta-analysis of randomized clinical trials. Am J Kidney Dis 49: 56–68

    Article  CAS  PubMed  Google Scholar 

  184. Zangrillo A, Biondi-Zoccai GG, Frati E, Covello RD, Cabrini L, Guarracino F, Ruggeri L, Bove T, Bignami E, Landoni G, (2012) Fenoldopam and acute renal failure in cardiac surgery: a meta-analysis of randomized placebo-controlled trials. J Cardiothorac Vasc Anesth 26: 407–413

    Article  CAS  PubMed  Google Scholar 

  185. Sackner-Bernstein JD, Skopicki HA, Aaronson KD, (2005) Risk of worsening renal function with nesiritide in patients with acutely decompensated heart failure. Circulation 111: 1487–1491

    Article  CAS  PubMed  Google Scholar 

  186. Nigwekar SU, Navaneethan SD, Parikh CR, Hix JK, (2009) Atrial natriuretic peptide for management of acute kidney injury: a systematic review and meta-analysis. Clin J Am Soc Nephrol 4: 261–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Mitaka C, Kudo T, Haraguchi G, Tomita M, (2011) Cardiovascular and renal effects of carperitide and nesiritide in cardiovascular surgery patients: a systematic review and meta-analysis. Crit Care 15: R258

    Article  PubMed  PubMed Central  Google Scholar 

  188. Nigwekar SU, Navaneethan SD, Parikh CR, Hix JK, (2009) Atrial natriuretic peptide for preventing and treating acute kidney injury. Cochrane Database Syst Rev: CD006028

    Google Scholar 

  189. Adabag AS, Ishani A, Bloomfield HE, Ngo AK, Wilt TJ, (2009) Efficacy of N-acetylcysteine in preventing renal injury after heart surgery: a systematic review of randomized trials. Eur Heart J 30: 1910–1917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Duong MH, MacKenzie TA, Malenka DJ, (2005) N-acetylcysteine prophylaxis significantly reduces the risk of radiocontrast-induced nephropathy: comprehensive meta-analysis. Catheter Cardiovasc Interv 64: 471–479

    Article  PubMed  Google Scholar 

  191. Ho KM, Morgan DJ, (2009) Meta-analysis of N-acetylcysteine to prevent acute renal failure after major surgery. Am J Kidney Dis 53: 33–40

    Article  PubMed  Google Scholar 

  192. Nigwekar SU, Kandula P, (2009) N-acetylcysteine in cardiovascular-surgery-associated renal failure: a meta-analysis. Ann Thorac Surg 87: 139–147

    Article  PubMed  Google Scholar 

  193. Hirschberg R, Kopple J, Lipsett P, Benjamin E, Minei J, Albertson T, Munger M, Metzler M, Zaloga G, Murray M, Lowry S, Conger J, McKeown W, O’Shea M, Baughman R, Wood K, Haupt M, Kaiser R, Simms H, Warnock D, Summer W, Hintz R, Myers B, Haenftling K, Capra W, Pike M, Guler HP, (1999) Multicenter clinical trial of recombinant human insulin-like growth factor I in patients with acute renal failure. Kidney Int 55: 2423–2432

    Article  CAS  PubMed  Google Scholar 

  194. Hladunewich MA, Corrigan G, Derby GC, Ramaswamy D, Kambham N, Scandling JD, Myers BD, (2003) A randomized, placebo-controlled trial of IGF-1 for delayed graft function: a human model to study postischemic ARF. Kidney Int 64: 593–602

    Article  CAS  PubMed  Google Scholar 

  195. Endre ZH, Walker RJ, Pickering JW, Shaw GM, Frampton CM, Henderson SJ, Hutchison R, Mehrtens JE, Robinson JM, Schollum JB, Westhuyzen J, Celi LA, McGinley RJ, Campbell IJ, George PM, (2010) Early intervention with erythropoietin does not affect the outcome of acute kidney injury (the EARLYARF trial). Kidney Int 77: 1020–1030

    Article  CAS  PubMed  Google Scholar 

  196. Song YR, Lee T, You SJ, Chin HJ, Chae DW, Lim C, Park KH, Han S, Kim JH, Na KY, (2009) Prevention of acute kidney injury by erythropoietin in patients undergoing coronary artery bypass grafting: a pilot study. Am J Nephrol 30: 253–260

    Article  CAS  PubMed  Google Scholar 

  197. Gottlieb SS, Brater DC, Thomas I, Havranek E, Bourge R, Goldman S, Dyer F, Gomez M, Bennett D, Ticho B, Beckman E, Abraham WT, (2002) BG9719 (CVT-124), an A1 adenosine receptor antagonist, protects against the decline in renal function observed with diuretic therapy. Circulation 105: 1348–1353

    Article  CAS  PubMed  Google Scholar 

  198. Givertz MM, Massie BM, Fields TK, Pearson LL, Dittrich HC; CKI, Investigators CKI, (2007) The effects of KW-3902, an adenosine A1-receptor antagonist, on diuresis and renal function in patients with acute decompensated heart failure and renal impairment or diuretic resistance. J Am Coll Cardiol 50: 1551–1560

    Article  CAS  PubMed  Google Scholar 

  199. Massie BM, O’Connor CM, Metra M, Ponikowski P, Teerlink JR, Cotter G, Weatherley BD, Cleland JG, Givertz MM, Voors A, DeLucca P, Mansoor GA, Salerno CM, Bloomfield DM, Dittrich HC; Investigators P, PROTECT Investigators and Committees, (2010) Rolofylline, an adenosine A1-receptor antagonist, in acute heart failure. N Engl J Med 363: 1419–1428

    Article  PubMed  Google Scholar 

  200. Howard SC, Jones DP, Pui CH, (2011) The tumor lysis syndrome. N Engl J Med 364: 1844–1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Mikkelsen TS, Mamoudou AD, Tuckuviene R, Wehner PS, Schroeder H, (2014) Extended duration of prehydration does not prevent nephrotoxicity or delayed drug elimination in high-dose methotrexate infusions: a prospectively randomized cross-over study. Pediatr Blood Cancer 61: 297–301

    Article  PubMed  Google Scholar 

  202. Sand TE, Jacobsen S, (1981) Effect of urine pH and flow on renal clearance of methotrexate. Eur J Clin Pharmacol 19: 453–456

    Article  CAS  PubMed  Google Scholar 

  203. Christensen ML, Rivera GK, Crom WR, Hancock ML, Evans WE, (1988) Effect of hydration on methotrexate plasma concentrations in children with acute lymphocytic leukemia. J Clin Oncol 6: 797–801

    Article  CAS  PubMed  Google Scholar 

  204. Kinoshita A, Kurosawa Y, Kondoh K, Suzuki T, Manabe A, Inukai T, Sugita K, Nakazawa S, (2003) Effects of sodium in hydration solution on plasma methotrexate concentrations following high-dose methotrexate in children with acute lymphoblastic leukemia. Cancer Chemother Pharmacol 51: 256–260

    CAS  PubMed  Google Scholar 

  205. Relling MV, Fairclough D, Ayers D, Crom WR, Rodman JH, Pui CH, Evans WE, (1994) Patient characteristics associated with high-risk methotrexate concentrations and toxicity. J Clin Oncol 12: 1667–1672

    Article  CAS  PubMed  Google Scholar 

  206. Darmon M, Vincent F, Camous L, Canet E, Bonmati C, Braun T, Caillot D, Cornillon J, Dimicoli S, Etienne A, Galicier L, Garnier A, Girault S, Hunault-Berger M, Marolleau JP, Moreau P, Raffoux E, Recher C, Thiebaud A, Thieblemont C, Azoulay E; Groupe de Recherche en Réanimation Respiratoire et Onco-Hématologique (GRRR-OH), (2013) Tumour lysis syndrome and acute kidney injury in high-risk haematology patients in the rasburicase era. A prospective multicentre study from the Groupe de recherche en réanimation respiratoire et oncohématologique. Br J Haematol 162: 489–497

    Article  CAS  PubMed  Google Scholar 

  207. Galardy PJ, Hochberg J, Perkins SL, Harrison L, Goldman S, Cairo MS, (2013) Rasburicase in the prevention of laboratory clinical tumour lysis syndrome in children with advanced mature B-NHL: a Children’s Oncology Group report. Br J Haematol 163: 365–372

    Article  CAS  PubMed  Google Scholar 

  208. Shimada M, Johnson RJ, May WS Jr., Lingegowda V, Sood P, Nakagawa T, Van QC, Dass B, Ejaz AA, (2009) A novel role for uric acid in acute kidney injury associated with tumour lysis syndrome. Nephrol Dial Transplant 24: 2960–2964

    Article  CAS  PubMed  Google Scholar 

  209. Lopez-Olivo MA, Pratt G, Palla SL, Salahudeen A, (2013) Rasburicase in tumor lysis syndrome of the adult: a systematic review and meta-analysis. Am J Kidney Dis 62: 481–492

    Article  CAS  PubMed  Google Scholar 

  210. Cheuk DK, Chiang AK, Chan GC, Ha SY, (2010) Urate oxidase for the prevention and treatment of tumor lysis syndrome in children with cancer. Cochrane Database Syst Rev: CD006945

    Google Scholar 

  211. Cortes J, Moore JO, Maziarz RT, Wetzler M, Craig M, Matous J, Luger S, Dey BR, Schiller GJ, Pham D, Abboud CN, Krishnamurthy M, Brown A, Jr., Laadem A, Seiter K, (2010) Control of plasma uric acid in adults at risk for tumor Lysis syndrome: efficacy and safety of rasburicase alone and rasburicase followed by allopurinol compared with allopurinol alone—results of a multicenter phase III study. J Clin Oncol 28: 4207–4213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Goldman SC, Holcenberg JS, Finklestein JZ, Hutchinson R, Kreissman S, Johnson FL, Tou C, Harvey E, Morris E, Cairo MS, (2001) A randomized comparison between rasburicase and allopurinol in children with lymphoma or leukemia at high risk for tumor lysis. Blood 97: 2998–3003

    Article  CAS  PubMed  Google Scholar 

  213. Coiffier B, Altman A, Pui CH, Younes A, Cairo MS, (2008) Guidelines for the management of pediatric and adult tumor lysis syndrome: an evidence-based review. J Clin Oncol 26: 2767–2778

    Article  CAS  PubMed  Google Scholar 

  214. Cairo MS, Coiffier B, Reiter A, Younes A, Panel TLSE, (2010) Recommendations for the evaluation of risk and prophylaxis of tumour lysis syndrome (TLS) in adults and children with malignant diseases: an expert TLS panel consensus. Br J Haematol 149: 578–586

    Article  CAS  PubMed  Google Scholar 

  215. Will A, Tholouli E, (2011) The clinical management of tumour lysis syndrome in haematological malignancies. Br J Haematol 154: 3–13

    Article  CAS  PubMed  Google Scholar 

  216. Druml W, (2005) Nutritional management of acute renal failure. J Ren Nutr 15: 63–70

    Article  PubMed  Google Scholar 

  217. Fiaccadori E, Cremaschi E, Regolisti G, (2011) Nutritional assessment and delivery in renal replacement therapy patients. Semin Dial 24: 169–175

    Article  PubMed  Google Scholar 

  218. Cano NJ, Aparicio M, Brunori G, Carrero JJ, Cianciaruso B, Fiaccadori E, Lindholm B, Teplan V, Fouque D, Guarnieri G, Espen, (2009) ESPEN Guidelines on parenteral nutrition: adult renal failure. Clin Nutr 28: 401–414

    Article  CAS  PubMed  Google Scholar 

  219. Fiaccadori E, Parenti E, Maggiore U, (2008) Nutritional support in acute kidney injury. J Nephrol 21: 645–656

    CAS  PubMed  Google Scholar 

  220. Bellomo R, Tan HK, Bhonagiri S, Gopal I, Seacombe J, Daskalakis M, Boyce N, (2002) High protein intake during continuous hemodiafiltration: impact on amino acids and nitrogen balance. Int J Artif Organs 25: 261–268

    Article  CAS  PubMed  Google Scholar 

  221. Berger MM, Shenkin A, Revelly JP, Roberts E, Cayeux MC, Baines M, Chiolero RL, (2004) Copper, selenium, zinc, and thiamine balances during continuous venovenous hemodiafiltration in critically ill patients. Am J Clin Nutr 80: 410–416

    Article  CAS  PubMed  Google Scholar 

  222. Mammen C, Al Abbas A, Skippen P, Nadel H, Levine D, Collet JP, Matsell DG, (2012) Long-term risk of CKD in children surviving episodes of acute kidney injury in the intensive care unit: a prospective cohort study. Am J Kidney Dis 59: 523–530

    Article  PubMed  Google Scholar 

  223. Wald R, Quinn RR, Adhikari NK, Burns KE, Friedrich JO, Garg AX, Harel Z, Hladunewich MA, Luo J, Mamdani M, Perl J, Ray JG; University of Toronto Acute Kidney Injury Research G, (2012) Risk of chronic dialysis and death following acute kidney injury. Am J Med 125: 585–593

    Article  PubMed  Google Scholar 

  224. Pannu N, James M, Hemmelgarn B, Klarenbach S; Alberta Kidney Disease Network, (2013) Association between AKI, recovery of renal function, and long-term outcomes after hospital discharge. Clin J Am Soc Nephrol 8: 194–202

    Article  PubMed  Google Scholar 

  225. Harel Z, Wald R, Bargman JM, Mamdani M, Etchells E, Garg AX, Ray JG, Luo J, Li P, Quinn RR, Forster A, Perl J, Bell CM, (2013) Nephrologist follow-up improves all-cause mortality of severe acute kidney injury survivors. Kidney Int 83: 901–908

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Christophe Vinsonneau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

RFE commune SFAR—SRLF., Société française d’anesthésie et de réanimation., Société de réanimation de langue française. et al. Insuffisance rénale aiguë en périopératoire et en réanimation (à l’exclusion des techniques d’épuration extrarénale). Méd. Intensive Réa 26, 481–504 (2017). https://doi.org/10.1007/s13546-017-1310-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13546-017-1310-z

Navigation