Ion Temperature Gradient Mode–Driven Solitary and Shock Waves in Electron-Positron-Ion Magnetized Plasma

Abstract

The characteristics of linear and nonlinear waves of ion temperature gradient mode in nonuniform electron-positron-ion magnetized plasma are investigated. A modified linear dispersion relation and its reduction in various limits are discussed. In nonlinear regime, ion temperature gradient mode–driven solitary and shock wave structures are obtained and discussed. It is found that corresponding peak potential and width of these nonlinear structures strongly depend on the positron number density and temperature. Our study reveals that in electron-positron-ion plasma, the ion energy transportation in laboratory as well as in astrophysical plasmas can be affected because of positrons.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    W. Minser, K.S. Throne, J.A. Wheeler. Gravitation (Freeman, San Francisco, 1973)

    Google Scholar 

  2. 2.

    M.C. Begelman, R.D. Blandford, M.J. Rees, . Rev. Mod. Phys. 56, 255 (1984)

    ADS  Article  Google Scholar 

  3. 3.

    F.C. Michel, . Rev. Mod. Phys. 54, 1 (1982)

    ADS  Article  Google Scholar 

  4. 4.

    M.L. Burns, A.K. Harding, R Ramaty, AIP. New York (1983)

  5. 5.

    C. Gahn, et al., . Appl. Phys. Lett. 77, 2662 (2000)

    ADS  Article  Google Scholar 

  6. 6.

    N.B. Narozhny, et al., . JETP Lett. 80, 382 (2004)

    ADS  Article  Google Scholar 

  7. 7.

    F.B. Rizzato, . J. Plasma Phys. 40, 289 (1988)

    ADS  Article  Google Scholar 

  8. 8.

    V.I. Berezihiani, L.N. Tsintsadze, P.K. Shukla, . J. Plasma Phys. 48, 139 (1992)

    ADS  Article  Google Scholar 

  9. 9.

    V.I. Berezihiani, S.M. Mahajan, . Phys. Rev. Lett. 73, 1110 (1994)

    ADS  Article  Google Scholar 

  10. 10.

    M. Surko, et al., . Rev. Sci. Instrum. 57, 1862 (1986)

    ADS  Article  Google Scholar 

  11. 11.

    C.M. Surko, T. Murphy, . Phys. Fluids. 3, 13 (1990)

    Google Scholar 

  12. 12.

    H. Saleem, Q. Haque, J. Vranjes, . Phys. Rev. E. 67, 057402 (2003)

    ADS  Article  Google Scholar 

  13. 13.

    A. Mushtaq, H. A. Shah, . Phys. Plasma. 12, 072306 (2005)

    ADS  Article  Google Scholar 

  14. 14.

    I. Kourakis, F. Verheest, N. Cramer, . Phys. Plasmas. 14, 022306 (2007)

    ADS  Article  Google Scholar 

  15. 15.

    S.I. Popel, S.V. Vladimirov, P.K. Shukla, . Phys. Plasmas. 2, 716 (1995)

    ADS  Article  Google Scholar 

  16. 16.

    H.R. Miller, P.J. Witter. Active Galactic Nuclei (Springer, Berlin, 1987)

    Google Scholar 

  17. 17.

    F.C. Michel, . Rev. Mod. Phys. 54, 1 (1982)

    ADS  Article  Google Scholar 

  18. 18.

    P.K. Shukla, M.Y. Yu, N.L. Tsintsade, . Phys. Fluids. 27, 327 (1984)

    ADS  Article  Google Scholar 

  19. 19.

    M. Hoshino, J. Arons, Y. Gallant, A.B. Langdon, . Astrophys. J. 390, 454 (1992)

    ADS  Article  Google Scholar 

  20. 20.

    N.A. EL-Bedwehy, W.M. Moslem, . Astrophys. Space Sci. 335, 435 (2011)

    ADS  Article  Google Scholar 

  21. 21.

    H.R. Pakzad, . Phys. Lett. A. 373, 847 (2009)

    ADS  Article  Google Scholar 

  22. 22.

    T. Tajima, T. Taniuti, . Phys. Rev. A. 42, 3587 (1990)

    ADS  Article  Google Scholar 

  23. 23.

    N. Jehan, M. Slahuddin, A.M. Mirza, . Phys. Plasmas. 16, 062305 (2009)

    ADS  Article  Google Scholar 

  24. 24.

    A. Esfandyari-Kalejahi, I. Kourakis, M. Mehdipoor, P.K. Shukla, . J. Phys. A. 39, 052117 (2006)

    Article  Google Scholar 

  25. 25.

    Y.N. Nejoh, . Phys. Plasmas. 3, 1447 (1996)

    ADS  Article  Google Scholar 

  26. 26.

    N.A. Chowdhury, A. Mannan, M.M. Hasan, A.A. Mamun, . Chaos. 27, 093105 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  27. 27.

    R.O. Dendy. Plasma Physics: An Introductory Course (Cambridge University Press, New York, 1993)

    Google Scholar 

  28. 28.

    F.F. Chen. Introduction to Plasma Physics and Controlled Fusion (Plenum Press, New York, 1983)

    Google Scholar 

  29. 29.

    M.Q. Tran, . Phys. Scr. 20, 317 (1979)

    ADS  Article  Google Scholar 

  30. 30.

    P.K. Shukla, A.A. Mamun. Introduction to Dusty Plasma Physics (IoP, Bristol, 2001)

    Google Scholar 

  31. 31.

    R.M. Kulsrud, J.P. Ostriker, J.E. Gunn, . Phys. Rev. Lett. 28, 636 (1972)

    ADS  Article  Google Scholar 

  32. 32.

    A. Jerman, D. Anderson, J. Weiland, . Nucl. Fusion. 27, 6 (1987)

    Google Scholar 

  33. 33.

    L.I. Rudakov, R.Z. Sagdeev, . Sov. Phys. Dokl. 6, 415 (1961)

    ADS  Google Scholar 

  34. 34.

    B. Coppi, M.N. Rosenbluth, R.Z. Sagdeev, . Phys. Fluids. 10, 582 (1967)

    ADS  Article  Google Scholar 

  35. 35.

    P.K. Shukla, L. Stenflo, . J. Plasma Phys. 70, 41 (2004)

    ADS  Article  Google Scholar 

  36. 36.

    P.N. Guzdar, L. Chen, W.M. Tang, P.H. Rutherford, . Phys. Fluids. 26, 673 (1983)

    ADS  Article  Google Scholar 

  37. 37.

    M. Frojdh, H. Nordman, J. Weiland, . Phys. Scr. 43, 186 (1991)

    ADS  Article  Google Scholar 

  38. 38.

    P.K. Shukla, L. Stenflo, . Phys. Scr. 68, 63 (2003)

    ADS  Article  Google Scholar 

  39. 39.

    U. Zakir, Q. Haque, M. Adnan, . Anisa Qamar. 23, 042104 (2016)

    Google Scholar 

  40. 40.

    A. Qamar, A.M. Mirza, G. Murtaza, J.U. Veranje, . Plasma Phys. 10, 02819 (2003)

    Article  Google Scholar 

  41. 41.

    J. Weiland. Collective Modes in Inhomogenous Media, Kinetic and Advance Fluid Theory (IOP, Bristol, 2000)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to U. Zakir.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Zakir, U. & Haque, Q. Ion Temperature Gradient Mode–Driven Solitary and Shock Waves in Electron-Positron-Ion Magnetized Plasma. Braz J Phys 50, 430–437 (2020). https://doi.org/10.1007/s13538-020-00752-z

Download citation

Keywords

  • Electron-positron-ion plasma
  • Ion temperature gradient mode
  • Linear dispersion relation
  • Solitons
  • Shocks