Skip to main content
Log in

Ion Temperature Gradient Mode–Driven Solitary and Shock Waves in Electron-Positron-Ion Magnetized Plasma

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The characteristics of linear and nonlinear waves of ion temperature gradient mode in nonuniform electron-positron-ion magnetized plasma are investigated. A modified linear dispersion relation and its reduction in various limits are discussed. In nonlinear regime, ion temperature gradient mode–driven solitary and shock wave structures are obtained and discussed. It is found that corresponding peak potential and width of these nonlinear structures strongly depend on the positron number density and temperature. Our study reveals that in electron-positron-ion plasma, the ion energy transportation in laboratory as well as in astrophysical plasmas can be affected because of positrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W. Minser, K.S. Throne, J.A. Wheeler. Gravitation (Freeman, San Francisco, 1973)

    Google Scholar 

  2. M.C. Begelman, R.D. Blandford, M.J. Rees, . Rev. Mod. Phys. 56, 255 (1984)

    Article  ADS  Google Scholar 

  3. F.C. Michel, . Rev. Mod. Phys. 54, 1 (1982)

    Article  ADS  Google Scholar 

  4. M.L. Burns, A.K. Harding, R Ramaty, AIP. New York (1983)

  5. C. Gahn, et al., . Appl. Phys. Lett. 77, 2662 (2000)

    Article  ADS  Google Scholar 

  6. N.B. Narozhny, et al., . JETP Lett. 80, 382 (2004)

    Article  ADS  Google Scholar 

  7. F.B. Rizzato, . J. Plasma Phys. 40, 289 (1988)

    Article  ADS  Google Scholar 

  8. V.I. Berezihiani, L.N. Tsintsadze, P.K. Shukla, . J. Plasma Phys. 48, 139 (1992)

    Article  ADS  Google Scholar 

  9. V.I. Berezihiani, S.M. Mahajan, . Phys. Rev. Lett. 73, 1110 (1994)

    Article  ADS  Google Scholar 

  10. M. Surko, et al., . Rev. Sci. Instrum. 57, 1862 (1986)

    Article  ADS  Google Scholar 

  11. C.M. Surko, T. Murphy, . Phys. Fluids. 3, 13 (1990)

    Google Scholar 

  12. H. Saleem, Q. Haque, J. Vranjes, . Phys. Rev. E. 67, 057402 (2003)

    Article  ADS  Google Scholar 

  13. A. Mushtaq, H. A. Shah, . Phys. Plasma. 12, 072306 (2005)

    Article  ADS  Google Scholar 

  14. I. Kourakis, F. Verheest, N. Cramer, . Phys. Plasmas. 14, 022306 (2007)

    Article  ADS  Google Scholar 

  15. S.I. Popel, S.V. Vladimirov, P.K. Shukla, . Phys. Plasmas. 2, 716 (1995)

    Article  ADS  Google Scholar 

  16. H.R. Miller, P.J. Witter. Active Galactic Nuclei (Springer, Berlin, 1987)

    Google Scholar 

  17. F.C. Michel, . Rev. Mod. Phys. 54, 1 (1982)

    Article  ADS  Google Scholar 

  18. P.K. Shukla, M.Y. Yu, N.L. Tsintsade, . Phys. Fluids. 27, 327 (1984)

    Article  ADS  Google Scholar 

  19. M. Hoshino, J. Arons, Y. Gallant, A.B. Langdon, . Astrophys. J. 390, 454 (1992)

    Article  ADS  Google Scholar 

  20. N.A. EL-Bedwehy, W.M. Moslem, . Astrophys. Space Sci. 335, 435 (2011)

    Article  ADS  Google Scholar 

  21. H.R. Pakzad, . Phys. Lett. A. 373, 847 (2009)

    Article  ADS  Google Scholar 

  22. T. Tajima, T. Taniuti, . Phys. Rev. A. 42, 3587 (1990)

    Article  ADS  Google Scholar 

  23. N. Jehan, M. Slahuddin, A.M. Mirza, . Phys. Plasmas. 16, 062305 (2009)

    Article  ADS  Google Scholar 

  24. A. Esfandyari-Kalejahi, I. Kourakis, M. Mehdipoor, P.K. Shukla, . J. Phys. A. 39, 052117 (2006)

    Article  Google Scholar 

  25. Y.N. Nejoh, . Phys. Plasmas. 3, 1447 (1996)

    Article  ADS  Google Scholar 

  26. N.A. Chowdhury, A. Mannan, M.M. Hasan, A.A. Mamun, . Chaos. 27, 093105 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  27. R.O. Dendy. Plasma Physics: An Introductory Course (Cambridge University Press, New York, 1993)

    MATH  Google Scholar 

  28. F.F. Chen. Introduction to Plasma Physics and Controlled Fusion (Plenum Press, New York, 1983)

    Google Scholar 

  29. M.Q. Tran, . Phys. Scr. 20, 317 (1979)

    Article  ADS  Google Scholar 

  30. P.K. Shukla, A.A. Mamun. Introduction to Dusty Plasma Physics (IoP, Bristol, 2001)

    Google Scholar 

  31. R.M. Kulsrud, J.P. Ostriker, J.E. Gunn, . Phys. Rev. Lett. 28, 636 (1972)

    Article  ADS  Google Scholar 

  32. A. Jerman, D. Anderson, J. Weiland, . Nucl. Fusion. 27, 6 (1987)

    Google Scholar 

  33. L.I. Rudakov, R.Z. Sagdeev, . Sov. Phys. Dokl. 6, 415 (1961)

    ADS  Google Scholar 

  34. B. Coppi, M.N. Rosenbluth, R.Z. Sagdeev, . Phys. Fluids. 10, 582 (1967)

    Article  ADS  Google Scholar 

  35. P.K. Shukla, L. Stenflo, . J. Plasma Phys. 70, 41 (2004)

    Article  ADS  Google Scholar 

  36. P.N. Guzdar, L. Chen, W.M. Tang, P.H. Rutherford, . Phys. Fluids. 26, 673 (1983)

    Article  ADS  Google Scholar 

  37. M. Frojdh, H. Nordman, J. Weiland, . Phys. Scr. 43, 186 (1991)

    Article  ADS  Google Scholar 

  38. P.K. Shukla, L. Stenflo, . Phys. Scr. 68, 63 (2003)

    Article  ADS  Google Scholar 

  39. U. Zakir, Q. Haque, M. Adnan, . Anisa Qamar. 23, 042104 (2016)

    Google Scholar 

  40. A. Qamar, A.M. Mirza, G. Murtaza, J.U. Veranje, . Plasma Phys. 10, 02819 (2003)

    Article  Google Scholar 

  41. J. Weiland. Collective Modes in Inhomogenous Media, Kinetic and Advance Fluid Theory (IOP, Bristol, 2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Zakir.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Zakir, U. & Haque, Q. Ion Temperature Gradient Mode–Driven Solitary and Shock Waves in Electron-Positron-Ion Magnetized Plasma. Braz J Phys 50, 430–437 (2020). https://doi.org/10.1007/s13538-020-00752-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-020-00752-z

Keywords

Navigation