Skip to main content
Log in

Topology of the Magnetic Field and Resistivity of a Compact Torus Generated in a Mirrorless Theta Pinch

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The mapping of the magnetic field and analysis of the plasma resistivity were used to study the change of magnetic field topology during the formation of a reversed field configuration. Using a theta pinch with straight coil, the formation of the torus was observed during the early time of the plasma radial implosion, in scale comparable to Alfvén’s time and shorter than the resistive diffusion. The non-intrusive excluded flux probe also indicated the formation of the torus even in the absence of mirror coils in the system. The plasma at the end region of the coil has distributed in the entire cross section of the tube, slightly peaked at the null field region. The anomalous plasma resistivity at the reconnection site was close to the prediction given by numerical calculation using numerical hybrid code with anomalous collision frequency either calculated using Chodura’s algorithm or evolution of microinstabilities, particularly the lower hybrid drift instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Bilbao, D. Grondona, Measurement of plasma current distribution using magnetic probes. Meas. Sci. Technol. 5(3), 288 (1994). http://stacks.iop.org/0957-0233/5/i=3/a=013

    Article  ADS  Google Scholar 

  2. J. Birn, J.T. Gosling, M. Hesse, T.G. Forbes, E.R. Priest, Simulations of three-dimensional reconnection in the solar corona. Astrophys. J. 541, 1078 (2000). https://doi.org/10.1063/1.1375150

    Article  ADS  Google Scholar 

  3. H. Bruzzone, C. Moreno, H. Kelly, Measurements of current sheets in plasmas with a finite-sized magnetic probe. Meas. Sci. Technol. 2(12), 1195 (1991). http://stacks.iop.org/0957-0233/2/i=12/a=015

    Article  ADS  Google Scholar 

  4. A.W. Carlson, . Phys. Fluids. 30(5), 1497 (1987)

    Article  ADS  Google Scholar 

  5. T.A. Carter, H. Ji, F. Trintchouk, M. Yamada, R.M. Kulsrud, Phys. Rev. Lett. 88(1), 015001–1 (2002)

    Article  ADS  Google Scholar 

  6. R. Chodura, A hybrid fluid-particle model of ion heating in high-Mach-number shock waves. Nuclear Fus. 15, 55 (1975). https://doi.org/10.1088/0029-5515/15/1/008. http://iopscience.iop.org/0029-5515/15/1/008

    Article  ADS  Google Scholar 

  7. R.E. Chrien, S. Okada, . Phys. Fluids. 30(11), 3574 (1987)

    Article  ADS  Google Scholar 

  8. R.J. Comisso, H.R. Griem, Experimental study of the postimplosion phase of a theta-pinch. Phys. Fluids. 20(1), 44 (1977). https://doi.org/10.1063/1.861694

    Article  ADS  Google Scholar 

  9. R.J. Comisso, Plasma heating and dynamics in a theta-pinch. Phd thesis, University of Maryland, College Park, MD (1975)

  10. R.C. Davidson, N.T. Gladd, Anomalous transport properties associated with the lower-hybrid-drift instability. Phys. Fluids. 18(10), 1327 (1975)

    Article  ADS  Google Scholar 

  11. R.C. Davidson, N.T. Gladd, C.S. Wu, J.D. Huba, . Phys. Fluids. 20(2), 301 (1977)

    Article  ADS  Google Scholar 

  12. L.A. Dorf, T.P. Intrator, T. Awe, R. Renneke, S.C. Hsu, G.A. Wurden, R. Siemon, V.E. Semenov, . J. Appl. Phys. 104, 073304 (2008)

    Article  ADS  Google Scholar 

  13. M. Yamada, Y. Ren, H. Ji, J. Breslau, S. Gerhardt, Experimental study of two-fluid effects on magnetic reconnection in a laboratory plasma with variable collisionality. Phys. Plasmas. 13, 052119 (2006). https://doi.org/10.1063/1.2203950

    Article  ADS  Google Scholar 

  14. T. Asai, T. Matsumoto, T. Roche, I. Allfrey, H. Gota, J. Sekiguchi, T. Edo, E. Garate, Ts. Takahashi, M. Biderhauer, T. Tajima, Compact toroid injection fueling in a large field-reversed configuration. Nuclear Fus. 57, 076018 (2017). https://doi.org/10.1088/1741-4326/aa6dcd

    Article  ADS  Google Scholar 

  15. H. Gota, K. Fujimoto, Y. Ohkuma, T. Takahashi, Y. Nogi, Separatrix shapes and internal structures of a field-reversed configuration plasma. Phys. Plasmas. 10(12), 4763–4770 (2003). https://doi.org/10.1063/1.1624835

    Article  ADS  Google Scholar 

  16. A.L. Hoffman, R.D. Milroy, L.C. Steinhauer, Appl. Phys. Lett. 41(1), 31 (1982)

    Article  ADS  Google Scholar 

  17. A.L. Hoffman, H.Y. Guo, R.D. Milroy, Z.A. Pietrzyk, Resistivity scaling of rotating magnetic field current drive in FRCS. Nuclear Fus. 43(10), 1091 (2003). http://stacks.iop.org/0029-5515/43/i=10/a=010

    Article  ADS  Google Scholar 

  18. A.L. Hoffman, H.Y. Guo, K.E. Miller, R.D. Milroy, Long pulse FRC sustainment with enhanced edge driven rotating magnetic field current drive. Nuclear Fus. 45(3), 176 (2005). http://stacks.iop.org/0029-5515/45/i=3/a =003

    Article  ADS  Google Scholar 

  19. R. Horiuchi, T. Sato, . Phys. Plasmas. 6(12), 4565 (1999)

    Article  ADS  Google Scholar 

  20. T. Ii, M. Inomoto, K. Gi, T. Umezawa, T. Ito, K. Kadowaki, Y. Kaminou, Y. Ono, Stability and confinement improvement of an oblate field-reversed configuration by using neutral beam injection. Nuclear Fus. 53(7), 073002 (2013). http://stacks.iop.org/0029-5515/53/i=7/a=073002

    Article  ADS  Google Scholar 

  21. J.H. Irby, Observations and interpretations of magnetic-ficle-line reconnection and tearing in a theta pinch. Phd thesis, University of Maryland, College Park, MD (1979)

  22. J.H. Irby, J.F. Drake, H.R. Griem, Observation and interpretation of magnetic-field-line reconnection and tearing in a theta pinch. Phys. Rev. Lett. 42, 228–231 (1979). https://doi.org/10.1103/PhysRevLett.42.228

    Article  ADS  Google Scholar 

  23. M.E. Kayama, R.A. Clemente, R.Y. Honda, M.S. Dobrowolsky, Radial plasma dynamic in sequential pinches. IEEE Trans. Plasma Sci. 37(11), 2186 (2009)

    Article  ADS  Google Scholar 

  24. M.E. Kayama, L.C. Nascimento, R.P. Mota, K.G. Kostov, M.A. Algatti, Analysis on the formation of a frc by flux measurements and mhd simulations. J. Phys. Conf. Series, 15th Latin American Workshop Plasma Phys. 591, 012019 (2015). https://doi.org/10.1088/1742-6596/591/1/012019

    Article  Google Scholar 

  25. M.E. Kayama, Resistivity in the dynamic current sheath of a field reversed configuration. Phys. Plasmas. 19 (3), 032511 (2012). https://doi.org/10.1063/1.3698405

    Article  ADS  Google Scholar 

  26. M. Keilhacker, Diffusion of trapped reversed magnetic fields in a theta pinch in the presence of a probe. Nucl. Fusion. 4, 287 (1964)

    Article  Google Scholar 

  27. P.C. Liewer, R.C. Davidson, Sheath broadening by the lower-hybrid-drift instability in pos- implosion theta pinches. Nuclear Fus. 17(1), 1953 (1977). http://iopscience.iop.org/0029-5515/17/1/008

    Article  Google Scholar 

  28. P.C. Liewer, N.A. Krall, Self-consistent approach to anomalous resistivity applied to theta pinch experiments. Phys. Fluids. 16(11), 1953 (1973)

    Article  ADS  Google Scholar 

  29. M.W. Binderbauer, A high performance field-reversed configuration. Phys. Plasmas. 22, 056110 (2015). https://doi.org/10.1063/1.4920950

    Article  ADS  Google Scholar 

  30. R.D. Milroy, J.T. Brackbill, Numerical studies of a field-reversed theta-pinch plasma. Phys. Fluids. 25(5), 775 (1982). https://doi.org/10.1063/1.863832

    Article  MATH  ADS  Google Scholar 

  31. R.D. Milroy, J.T. Slough, . Phys. Fluids B. 30(11), 3587 (1987)

    Article  Google Scholar 

  32. M. Ozaki, T. Sato, R. Horiuchi, C.S. Group, . Plasma Phys. 3(6), 2265 (1996)

    Article  Google Scholar 

  33. W. Pei, R. Horiuchi, T. Sato, Long time scale evolution of collisionless driven reconnection in a two-dimensional open system. Phys. Plasmas. 8(7), 3251 (2001). https://doi.org/10.1063/1.1375150

    Article  ADS  Google Scholar 

  34. D.J. Rej, W.T. Armstrong, Electron temperature measurements in the field-reversed configuration experiment FRX-C. Nuclear Fus. 24(2), 177 (1984). http://stacks.iop.org/0029-5515/24/i=2/a=004

    Article  Google Scholar 

  35. E. Sevillano, F.L. Ribe, Reconnection studies in field-reversed configurations. Phys. Fluids. 28(10), 3142–3153 (1985). https://doi.org/10.1063/1.865356. http://scitation.aip.org/content/aip/journal/pof1/28/10/10.1063/1.865356

    Article  ADS  Google Scholar 

  36. A.G. Sgro, C.W. Nielson, Hybrid model studies of ions dynamics and magnetic field diffusion during pinch implosions. Phys. Fluids. 19(1), 126 (1976)

    Article  ADS  Google Scholar 

  37. J.T. Slough, A.L. Hoffman, R.D. Milroy, D.G. Harding, L.C. Steinhauer, Flux and particle life-time measurements in field-reversed configurations. Nuclear Fus. 24(12), 1537 (1984). http://stacks.iop.org/0029-5515/24/i=12/a=002

    Article  Google Scholar 

  38. J. Slough, G. Votroubek, C. Pihl, Creation of a high-temperature plasma through merging and compression of supersonic field reversed configuration plasmoids. Nuclear Fus. 51(5), 053008 (2011). http://stacks.iop.org/0029-5515/51/i=5/a=053008

    Article  ADS  Google Scholar 

  39. L.C. Steinhauer, Review of field-reversed configurations. Phys. Plasmas. 18(7), 070501 (2011). https://doi.org/10.1063/1.3613680. http://scitation.aip.org/content/aip/journal/pop/18/7/10.1063/1.3613680

    Article  ADS  Google Scholar 

  40. N. Takeuchi, K. Yasuoka, S. Ishii, Surface modification of thin rods by theta-pinching mettalic plasmas. IEEE Trans. Plasma Sci. 34(4), 1112 (2006)

    Article  ADS  Google Scholar 

  41. F. Trintchouk, M. Yamada, H. Ji, R.M. Kulsrud, T.A. Carter, . Phys. Plasmas. 10(1), 319 (2003). https://doi.org/10.1063/1.1528612

    Article  ADS  Google Scholar 

  42. M. Tuszewski, Experimental study of the equilibrium of field-reversed configurations. Plasma Phys.Controlled Fus. 26(8), 991 (1984). http://stacks.iop.org/0741-3335/26/i=8/a=004

    Article  ADS  Google Scholar 

  43. M. Tuszewski, A. Smirnov, M.C. Thompson, S. Korepanov, T. Akhmetov, A. Ivanov, R. Voskoboynikov, L. Schmitz, D. Barnes, M.W. Binderbauer, R. Brown, D.W. Bui, R. Clary, K.D. Conroy, B.H. Deng, S.A. Dettrick, J.D. Douglass, E. Garate, F.J. Glass, H. Gota, H.Y. Guo, D. Gupta, S. Gupta, J.S. Kinley, K. Knapp, A. Longman, M. Hollins, X.L. Li, Y. Luo, R. Mendoza, Y. Mok, A. Necas, S. Primavera, E. Ruskov, J.H. Schroeder, L. Sevier, A. Sibley, Y. Song, X. Sun, E. Trask, A.D.V. Drie, J.K. Walters, M.D. Wyman, Field reversed configuration confinement enhancement through edge biasing and neutral beam injection. Phys. Rev. Lett. 108, 255008 (2012). https://doi.org/10.1103/PhysRevLett.108.255008

    Article  ADS  Google Scholar 

  44. M. Yamada, R. Kulsrud, H. Ji, Radial plasma dynamic in sequential pinches. Rev. Modern Phys. 82, 603 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to P.H. Sakanaka for providing the numerical code; to R.Y. Honda, M.A. Algatti, and R.P. Mota for the discussions; and to J.B. Galhardo for the technical support.

Funding

This work had support from the Sao Paulo Research Foundation (FAPESP) and the National Council for Scientific and Technological Development (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milton E. Kayama.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayama, M.E., Michelin, T.J. & Nascimento, L.C. Topology of the Magnetic Field and Resistivity of a Compact Torus Generated in a Mirrorless Theta Pinch. Braz J Phys 49, 191–197 (2019). https://doi.org/10.1007/s13538-019-00644-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-019-00644-x

Keywords

Navigation