Skip to main content
Log in

Life Cycle Assessment of a Celery Paddy Macrocosm Exposed to Manufactured Nano-TiO2

  • Original article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Objective

This study analyzes the environmental effects of nano-TiO2 exposure using Life cycle assessment (LCA) within a modelled system of a celery paddy macrocosm through different trophic levels in order to complement existing risk assessment studies of bioaccumulation.

Methods

LCA in GaBi software was used to model a celery paddy macrocosm system that includes celery (Apium graveolens), with different trophic levels such as, fresh water, land use, algae (Chlorella vulgaris), and immature rainbow trout (Oncorhynchus mykiss), as well as the use of electricity in the macrocosm system and exposure to nano-TiO2. A functional unit of 0.5 kg and exposure to nano-TiO2 was selected to analyze the different environmental impact categories.

Results

The use of nano-TiO2 in freshwater was related to marine aquatic ecotoxicity, mainly because of the large amount of inorganic emissions in air and emissions of hydrogen fluoride and beryllium in fresh water. Normalized values show that from a global perspective, the greatest repercussions involve marine aquatic ecotoxicity and human toxicity, the latter mainly influenced by air emissions of polycyclic aromatic hydrocarbons. Nano-TiO2 also had some effects on eutrophication impact category related to ammonia emissions.

Conclusion

The normalized global values also showed large effects in marine aquatic ecotoxicity and human toxicity. In addition, nano-TiO2 use in a macrocosm as nutrient showed repercussions in eutrophication. Therefore, a broader study that includes the material flow during feedstock processing of nano-TiO2 is necessary to determine the repercussions of this nanomaterial in other life-cycle stages, especially use and end of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shea, C. M. Future management research directions in nanotechnology: a case study. J. Eng. Technol. Manage. 22, 185–200 (2005).

    Article  Google Scholar 

  2. Linkov, I. & Steevens, J. (eds.) in Nanomaterials: Risks and Benefits. NATO Science for Peace and Security Series C: Environmental Security (Springer Netherlands 2009).

    Google Scholar 

  3. Nanotech project, http://www.nanotechproject.org/cpi/, (2016).

  4. Roco, M. C., Mirkin, C. A. & Hersam, M. C. Nanotechnology research directions for societal needs in 2020: summary of international study. J. Nanopart. Res. 13, 897–919 (2011).

    Article  Google Scholar 

  5. Wiesner, M. R. et al. Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterials. Environ. Sci. Technol. 43, 6458–6462 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Shatkin, J. A. Informing environmental decision making by combining life cycle assessment and risk analysis. J. Ind. Ecol. 12, 278–281 (2008).

    Article  Google Scholar 

  7. Chen, H. & Yada, R. Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci. Technol. 22, 585–594 (2011).

    Article  CAS  Google Scholar 

  8. Hong, F. et al. Effect of nano–TiO2 on photochemical reaction of chloroplasts of spinach. Biol. Trace Elem. Res. 105, 269–279 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Yang, F. et al. The improvement of spinach growth by nano–anatase TiO2 treatment is related to nitrogen photoreduction. Biol. Trace Elem. Res. 119, 77–88 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Joost, U. et al. Photocatalytic antibacterial activity of nano–TiO2 (anatase)–based thin films: Effects on Escherichia coli cells and fatty acids. J. Photoch. Photobio. 142, 178–185 (2015).

    Article  CAS  Google Scholar 

  11. Geng, H. R., Miao, S. S., Jin, S. F. & Yang, H. A newly developed molecularly imprinted polymer on the surface of TiO2 for selective extraction of triazine herbicides residues in maize, water, and soil. Anal. =Bioanal. Chem. 407, 8803–8812 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Cui, H., Jiang, P., Zhang, W. & Gu, Q. L. Application of nano–TiO2 sol in crop diseases control. Eur. Cell Mater. 20, doi: 10.1186/s11671–016–1721–1 (2010).

  13. Asli, S. & Neumann, M. Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ. 32, 577–584 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Christou, A., Eliadou, E., Michael, C., Hapeshi, E. & Fatta–kassinos, D. Assessment of long–term wastewater irrigation impacts on the soil geochemical properties and the bioaccumulation of heavy metals to the agricultural products. Environ. Monit. Assess. 186, 4857–4870 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Sacristán, D., Recatalá, L. & Viscarra Rossel, R. A. Toxicity and bioaccumulation of Cu in an accumulator crop (Lactuca sativa L.) in different Australian agricultural soils. Sci. Hort. 193, 346–352 (2015).

    Article  CAS  Google Scholar 

  16. Ghosh, M., Bandyopadhyay, M. & Mukherjee, A. Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophies levels: Plant and human lymphocytes. Chemospher. 81, 1253–1262 (2010).

    Article  CAS  Google Scholar 

  17. Yeo, M. K. & Nam, D. H. Influence of different types of nanomaterials on their bioaccumulation in a paddy microcosm: a comparison of TiO2 nanoparticles and nanotubes. Environ. Pollut. 178, 166–172 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Kim, J. I., Park, H. G., Chang, K. H., Nam, D. H. & Yeo, M. K. Trophic transfer of nano–TiO2 in a paddy microcosm: a comparison of single–dose versus sequential multi–dose exposures. Environ. Pollut. 212, 316–324 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. GaBi ts. Software and database contents for Life Cycle Engineering, Education Version (Thinkstep AG,Stuttgart, 2014).

    Google Scholar 

  20. Ecoinvent centre ecoinvent data and reports v3.1 (Swiss Centre for Life Cycle Inventories, Dübendorf, Switerland, 2015).

  21. Canals, L. M. Land Use in LCA: A New Subject Area and Call for Papers. Int. J. Life Cycle Assess. 12, 1 (2007).

    Article  Google Scholar 

  22. US National Plant Germplasm System. Taxonomy browse. https://npgsweb.ars–grin.gov/gringlobal/taxon/ taxonomysimple.aspx, (2016).

    Google Scholar 

  23. Shivashri, C., Rajarajeshwari, T. & Rajasekar, P. Hepatoprotective action of celery (Apium graveolens) leaves in acetaminophen–fed freshwater fish (Pangasius sutchi). Fish Physiol. Biochem. 39, 1057–1069 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Yang, Y. et al. Bioaccumulation and translocation of cadmium in cole (Brassica campestris L.) and celery (Apium graveolens) grown in the polluted oasis soil, Northwest of China. J. Environ. Sci. 23, 1368–1374 (2011).

    Article  CAS  Google Scholar 

  25. Federici, G., Shaw, B. J. & Handy, R. D. Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): Gill injury, oxidative stress, and other physiological effects. Aquat. Toxicol. 84, 415–430 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Ramsden, C. S., Smith, T. J., Shaw, B. J. & Handy, R. D. Dietary exposure to titanium dioxide nanoparticles in rainbow trout, (Oncorhynchus mykiss): no effect on growth, but subtle biochemical disturbances in the brain. Ecotoxicolog. 18, 939–951 (2009).

    Article  CAS  Google Scholar 

  27. Hund–Rinke, K. & Simon, M. Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids. Environ. Sci. Pollut. Res. 13, 225–232 (2006).

    Article  CAS  Google Scholar 

  28. Barrows, F. T. & Frost, J. B. Evaluation of the nutritional quality of co–products from the nut industry, algae and an invertebrate meal for rainbow trout, Oncorhynchus mykiss. Aquacultur. 434, 315–324 (2014).

    Article  CAS  Google Scholar 

  29. Banaee, M., Sureda, A., Mirvaghefi, A. R. & Ahmadi, K. Effects of diazinon on biochemical parameters of blood in rainbow trout (Oncorhynchus mykiss). Pestic. Biochem. Phys. 99, 1–6 (2011).

    Article  CAS  Google Scholar 

  30. Samuel–Fitwi, B., Schroeder, J. P. & Schulz, C. System delimitation in life cycle assessment (LCA) of aquaculture striving for valid and comprehensive environmental assessment using rainbow trout farming as a case study. Int. J. Life Cycle. Assess. 18, 577–589 (2013).

    Article  CAS  Google Scholar 

  31. Gnansounou, E. & Kenthorai Raman, J. Life cycle assessment of algae biodiesel and its co–products. Appl. Energ. 161, 300–308 (2016).

    Article  CAS  Google Scholar 

  32. Hischier, R. et al. Life cycle assessment of façade coating systems containing manufactured nanomaterials. J. Nanopart. Res. 17, 68 (2015).

    Article  Google Scholar 

  33. Weidema, B. P. Multi–User Test of the Data Quality Matrix for Product Life Cycle Inventory. Int. J. Life Cycle Assess. 3, 259–265 (1998).

    Article  Google Scholar 

  34. Guinée, J. Handbook on life cycle assessment–operational guide to the ISO standards. Int. J. Life Cycle Assess. 6, 255 (2001).

    Article  Google Scholar 

  35. Pelaez, M. et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B–Environ. 125, 331–349 (2012).

    Article  CAS  Google Scholar 

  36. Ruggieri, F., D’Archivio, A. A., Fanelli, M. & Santucci, S. Photocatalytic degradation of linuron in aqueous suspensions of TiO2. RSC Adv. 1, 611–618 (2011).

    Article  CAS  Google Scholar 

  37. Sadler, L. R. Apparatus, system, and method for removing ethylene from a gaseous environment (Google Patents 2013).

    Google Scholar 

  38. Hu, Q., Fang, Y., Yang, Y., Ma, N. & Zhao, L. Effect of nanocomposite–based packaging on postharvest quality of ethylene–treated kiwifruit (Actinidia deliciosa) during cold storage. Food Res. Int. 44, 1589–1596 (2011).

    Article  CAS  Google Scholar 

  39. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for fluorides, hydrogen fluoride, and fluorine (Public Health Service. U.S. Department of Health and Human Services. Atlanta, GA,2003).

    Google Scholar 

  40. Agency for Toxic Substances and Disease Registry (ATSDR) Toxicological Profile for Beryllium (Draft) (Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA,1992).

  41. Gondwe, M. J. S., Guildford, S. J. & Hecky, R. E. Carbon, nitrogen and phosphorus loadings from tilapia fish cages in Lake Malawi and factors influencing their magnitude. J. Great Lakes Res. 37, 93–101 (2011).

    Article  CAS  Google Scholar 

  42. Environment and Climate Change Canada. Depletion of the Ozone Layer and its impacts. https://www.ec.gc.ca/ ozone/default.asp?lang=En&n=D57A0006–1 (2016).

    Google Scholar 

  43. Pierson–Wickmann, A. C., Aquilina, L., Weyer, C., Molénat, J. & Lischeid, G. Acidification processes and soil leaching influenced by agricultural practices revealed by strontium isotopic ratios. Geochim. Cosmochim. Acta. 73, 4688–4704 (2009).

    Article  CAS  Google Scholar 

  44. Middlemas, S., Fang, Z. Z. & Fan, P. Life cycle assessment comparison of emerging and traditional Titanium dioxide manufacturing processes. J. Clean Prod. 89, 137–147 (2015).

    Article  CAS  Google Scholar 

  45. US EPA. Nanomaterial case studies: nanoscale titanium dioxide in water treatment and in topical sunscreen. National Center for Environmental Assessment–RTP Division. Office of Research and Development. U.S. Environmental Protection Agency (2010).

    Google Scholar 

  46. Xie, W. et al. Short–term effects of copper, cadmium and cypermethrin on dehydrogenase activity and microbial functional diversity in soils after long–term mineral or organic fertilization. Agric. Ecosyst. Environ. 129, 450–456 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Kyeong Yeo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Céspedes, C., Yeo, MK. Life Cycle Assessment of a Celery Paddy Macrocosm Exposed to Manufactured Nano-TiO2. Toxicol. Environ. Health Sci. 10, 288–296 (2018). https://doi.org/10.1007/s13530-018-0377-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-018-0377-x

Keywords

Navigation