Sublethal concentrations of atrazine promote molecular and biochemical changes in the digestive gland of the Pacific oyster Crassostrea gigas

  • Do-Hee Lee
  • Ye-Ji Rhee
  • Kwang-Sik Choi
  • Sang-Eun Nam
  • Hye-Jin Eom
  • Jae-Sung Rhee
Original Article


Atrazine is an herbicide used to control pre- and post-emergence broadleaf weeds and grasses. To understand the acute effects of atrazine on oyster digestive gland, a series of molecular and biochemical responsive parameters were analyzed in the Pacific oyster Crassostrea gigas after exposure to different concentrations (1, 10, and 50 μg L-1) for 96 h. Intracellular malondialdehyde (MDA) level was significantly increased in the 50 μg L-1 exposed oysters, while no significant modulation was observed in glutathione (GSH) level. Of antioxidant defense system, enzymatic activities of catalase (CAT) and superoxide dismutase (SOD) were significantly higher at 50 μg L-1 compared to the control or DMSO treated groups. Regarding their transcriptional levels, two glutathione S-transferases (GSTs) GSTO and GSTP, CuZnSOD, MnSOD, and CAT were significantly upregulated at 10 and/or 50 μg L-1 in the oyster digestive gland. Atrazine exposure reduced both enzymatic activity and mRNA expression of Na+/K+-ATPase and acetylcholinesterase (AChE) at 50 μg L-1. In addition, acute exposure of 10 and/or 50 μg L-1 atrazine significantly increased transcriptional expression of Hsp superfamily with strong induction of hsp70 and hsp90 family. These results suggest that atrazine has detrimental effects on the digestive gland of C. gigas by modulating important molecular and biochemical parameters within relatively short time period.


Atrazine Pacific oyster Crassostrea gigas Digestive gland 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Graymore, M., Stagnitti, F. & Allinson, G. Impacts of atrazine in aquatic ecosystems. Environ. Int. 26, 483–495 (2001).PubMedCrossRefGoogle Scholar
  2. 2.
    Solomon, K. R. et al. Ecological risk assessment of atrazine in North American surface waters. Environ. Toxicol. Chem. 15, 31–76 (1996).CrossRefGoogle Scholar
  3. 3.
    DeLorenzo, M. E., Scott, G. I. & Ross, P. E. Annual review: toxicity of pesticides to aquatic microorganisms: a review. Environ. Toxicol. Chem. 20, 84–98 (2001).PubMedCrossRefGoogle Scholar
  4. 4.
    MDDEP. Critère de qualité de l’eau de surface. Direction du suivi de l’état de l’environnement, ministère du Développement durable, de l’Environnement et des Parcs, Québec (2008).Google Scholar
  5. 5.
    US EPA. Overview of the Ecological Risk Assessment Process in the Office of Pesticide Programs. Office of Prevention, Pesticides and Toxic Substances, Washington, DC (2004).Google Scholar
  6. 6.
    Hayes, T. B. et al. Atrazine induces complete feminization and chemical castration in male African clawed frogs (Xenopus laevis). Proc. Natl. Acad. Sci. 107, 4612–4617 (2010).PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Rohr, J. R. & McCoy, K. A. A qualitative meta-analysis reveals consistent effects of atrazine on freshwater fish and amphibians. Environ. Health Perspect. 118, 20–32 (2010).PubMedCrossRefGoogle Scholar
  8. 8.
    Stegeman, J. & Teal, J. Accumulation, release and retention of petroleum hydrocarbons by the oyster Crassostrea virginica. Mar. Biol. 22, 37–44 (1973).CrossRefGoogle Scholar
  9. 9.
    Rainbow, P. S. Biomonitoring of heavy metal availability in the marine environment. Mar. Pollut. Bull. 31, 183–192 (1995).CrossRefGoogle Scholar
  10. 10.
    Zhang, G. et al. The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490, 49–54 (2012).PubMedCrossRefGoogle Scholar
  11. 11.
    Zhang, G. et al. Molecular basis for adaptation of oysters to stressful marine intertidal environments. Annu. Rev. Anim. Biosci. 4, 357–381 (2016).PubMedCrossRefGoogle Scholar
  12. 12.
    Nielsen, F., Mikkelsen, B. B., Nielsen, J. B., Andersen, H. R. & Grandjean, P. Plasma malondialdehyde as biomarker for oxidative stress: reference interval and effects of life-style factors. Clin. Chem. 43, 1209–1214 (1997).PubMedGoogle Scholar
  13. 13.
    Qian, H. et al. Inhibitory effects of atrazine on Chlorella vulgaris as assessed by real-time polymerase chain reaction. Environ. Toxicol. Chem. 27, 182–187 (2008).PubMedCrossRefGoogle Scholar
  14. 14.
    Nwani, C. D. et al. Toxicity of the herbicide atrazine: effects on lipid peroxidation and activities of antioxidant enzymes in the freshwater fish Channa punctatus (Bloch). Int. J. Environ. Res. Public Health 7, 3298–3312 (2010).PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Paulino, M. G., Souza, N. E. & Fernandes, M. N. Subchronic exposure to atrazine induces biochemical and histopathological changes in the gills of a Neotropical freshwater fish, Prochilodus lineatus. Ecotoxicol. Environ. Saf. 80, 6–13 (2012).PubMedCrossRefGoogle Scholar
  16. 16.
    Santos, K. C. & Martinez, C. B. Genotoxic and biochemical effects of atrazine and Roundup®, alone and in combination, on the Asian clam Corbicula fluminea. Ecotoxicol. Environ. Saf. 100, 7–14 (2014).PubMedCrossRefGoogle Scholar
  17. 17.
    Lesser, M. P. Oxidative stress in marine environments: biochemistry and physiological ecology. Annu. Rev. Physiol. 68, 253–278 (2006).PubMedCrossRefGoogle Scholar
  18. 18.
    Blahova, J. et al. Oxidative stress responses in zebrafish Danio rerio after subchronic exposure to atrazine. Food Chem. Toxicol. 61, 82–85 (2013).PubMedCrossRefGoogle Scholar
  19. 19.
    Van Der Kraak, G. J., Hosmer, A. J., Hanson, M. L., Kloas, W. & Solomon, K. R. Effects of atrazine in fish, amphibians, and reptiles: an analysis based on quantitative weight of evidence. Crit. Rev. Toxicol. 44, 1–66 (2014).CrossRefGoogle Scholar
  20. 20.
    Lucu, C. & Flik, G. Na+-K+-ATPase and Na+/Ca2+ exchange activities in gills of hyperregulating Carcinus maenas. Am. J. Physiol. 276, 490–499 (1999).Google Scholar
  21. 21.
    Soreq, H. & Seidman, S. Acetylcholinesterase -new roles for an old actor. Nat. Rev. Neurosci. 2, 294–302 (2001).PubMedCrossRefGoogle Scholar
  22. 22.
    Lindquist, S. & Craig, E.A. The heat-shock proteins. Annu. Rev. Genet. 22, 631–677 (1988).PubMedCrossRefGoogle Scholar
  23. 23.
    Feder, M. E. & Hofmann, G. E. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61, 243–282 (1999).PubMedCrossRefGoogle Scholar
  24. 24.
    Yang, L. et al. Alterations in mRNA expression of steroid receptors and heat shock proteins in the liver of rare minnow (Grobiocypris rarus) exposed to atrazine and p,p′-DDE. Aquat. Toxicol. 98, 381–387 (2010).PubMedCrossRefGoogle Scholar
  25. 25.
    Xing, H., Liu, T., Zhang, Z., Wang, X. & Xu, S. Acute and subchronic toxic effects of atrazine and chlorpyrifos on common carp (Cyprinus carpio L.): Immunotoxicity assessments. Fish Shellfish Immunol. 45, 327–333 (2015).PubMedCrossRefGoogle Scholar
  26. 26.
    Geret, F., Jouan, A., Turpin, V., Bebianno, M. J. & Cosson, R.P. Influence of metal exposure on metallothionein synthesis and lipid peroxidation in two bivalve mollusks: the oyster (Crassostrea gigas) and the mussel (Mytilus edulis). Aquat. Living Resour. 15, 61–66 (2002).CrossRefGoogle Scholar
  27. 27.
    Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).PubMedCrossRefGoogle Scholar
  28. 28.
    Rhee, J.-S. et al. Molecular cloning, expression, biochemical characteristics, and biomarker potential of theta class glutathione S-transferase (GST-T) from the polychaete Neanthes succinea. Aquat. Toxicol. 83, 104–115 (2007).PubMedCrossRefGoogle Scholar
  29. 29.
    Kim, B.-M. et al. Cu/Zn-and Mn-superoxide dismutase (SOD) from the copepod Tigriopus japonicus: molecular cloning and expression in response to environmental pollutants. Chemosphere 84, 1467–1475 (2011).PubMedCrossRefGoogle Scholar
  30. 30.
    Kim, R.-O. et al. Expression pattern of entire cytochrome P450 genes and response of defensomes in the benzo[a]pyrene-exposed monogonont rotifer Brachionus koreanus. Environ. Sci. Technol. 47, 13804–13812 (2013).PubMedCrossRefGoogle Scholar
  31. 31.
    McCormick, S. D. Methods for non-lethal gill biopsy and measurements of Na+, K+-ATPase activity. Can. J. Fish Aquat. Sci. 50, 656–658 (1993).CrossRefGoogle Scholar
  32. 32.
    Park, M. S. et al. Effects of antifouling biocides on molecular and biochemical defense system in the gill of the pacific oyster Crassostrea gigas. PLoS One 11, e0168978 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Ellman, G. L., Courtney, K. D., Andres, V. Jr. & Feather-stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7, 88–95 (1961).PubMedCrossRefGoogle Scholar
  34. 34.
    Rhee, J.-S. et al. Effect of pharmaceuticals exposure on acetylcholinesterase (AchE) activity and on the expression of AchE gene in the monogonont rotifer, Brachionus koreanus. Comp. Biochem. Physiol. C 158, 216–224 (2013).Google Scholar
  35. 35.
    Bustin, S. A. et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622 (2009).PubMedCrossRefGoogle Scholar
  36. 36.
    Farcy, E., Voiseux, C., Lebel, J. M. & Fiévet, B. Transcriptional expression levels of cell stress marker genes in the Pacific oyster Crassostrea gigas exposed to acute thermal stress. Cell Stress Chaperones 14, 371–380 (2009).PubMedCrossRefGoogle Scholar
  37. 37.
    Béguel, J. P., Huvet, A., Quillien, V., Lambert, C. & Fabioux, C. Study of the antioxidant capacity in gills of the Pacific oyster Crassostrea gigas in link with its reproductive investment. Comp. Biochem. Physiol. C 157, 63–71 (2013).Google Scholar
  38. 38.
    Serrano, M. A. et al. Differential gene transcription, biochemical responses, and cytotoxicity assessment in Pacific oyster Crassostrea gigas exposed to ibuprofen. Environ. Sci. Pollut. Res. 22, 17375–17385 (2015).CrossRefGoogle Scholar
  39. 39.
    Zhu, Q., Zhang, L., Li, L., Que, H. & Zhang, G. Expression characterization of stress genes under high and low temperature stresses in the Pacific oyster, Crassostrea gigas. Mar. Biotechnol. 18, 176–188 (2016).PubMedCrossRefGoogle Scholar
  40. 40.
    Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real time quantitative PCR and the 2-ΔΔCt method. Methods 25, 402–408 (2001).PubMedCrossRefGoogle Scholar
  41. 41.
    Son, G. W. et al. Analysis of miRNA expression profiling in melatonin-exposured endothelial cells. Mol. Cell. Toxicol. 12, 73–81 (2016).CrossRefGoogle Scholar

Copyright information

© Korean Society of Environmental Risk Assessment and Health Science and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Do-Hee Lee
    • 1
  • Ye-Ji Rhee
    • 1
  • Kwang-Sik Choi
    • 1
  • Sang-Eun Nam
    • 1
  • Hye-Jin Eom
    • 1
  • Jae-Sung Rhee
    • 1
    • 2
    • 3
  1. 1.Department of Marine Science, College of Natural SciencesIncheon National UniversityIncheonRepublic of Korea
  2. 2.Research Institute of Basic SciencesIncheon National UniversityIncheonRepublic of Korea
  3. 3.Institute of Green Environmental Research CenterIncheonRepublic of Korea

Personalised recommendations