Skip to main content

Advertisement

Log in

Managing short-lived climate forcers in curbing climate change: an atmospheric chemistry synopsis

  • Published:
Journal of Environmental Studies and Sciences Aims and scope Submit manuscript

Abstract

The Montreal Protocol has set an extraordinary example by applying scientific discoveries, technological innovations, and swift political actions to solving one of the most urgent environmental problems facing humans. With its ongoing implementation, the stratospheric ozone is expected to return to its 1980 levels around mid-twenty-first century. In addition, the Montreal Protocol has contributed to mitigating climate change by reducing the emissions of certain greenhouse gases. The management of several short-lived climate forcers, including hydrofluorocarbons, tropospheric ozone, black carbon, and methane, is worthy of consideration as a fast-response, near-term measure to curb climate change, while international treaties to reduce the emissions of long-lived climate forcers, such as carbon dioxide, are under discussion. This paper aims to provide a concise overview of the scientific concepts and atmospheric processes behind these policy considerations. The focus is on the fundamental atmospheric chemistry that provides the basis for a co-benefits approach in mitigating both climate change and stratospheric ozone depletion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Radiative forcing: a measure of how a climate forcing agent influences Earth’s energy balance, with a positive value indicating a net heat gain to the lower atmosphere, which leads to a globally averaged surface temperature increase, and a negative value indicating a net heat loss.

  2. Velders GJM, Solomon S and Daniel JS (2014) Growth of climate change commitments from HFC banks and emissions. Atmos. Chem. Phys. 14(9):4563-4572 (“If, for example, HFC production were to be phased out in 2020 instead of 2050, not only could about 91–146 Gt CO2-eq of cumulative emission be avoided from 2020 to 2050, but an additional bank of about 39–64 Gt CO2-eq could also be avoided in 2050.” The total ranges from 130 to 210 Gt CO2-eq.)

  3. Amendments had new chemicals added to the lists of controlled substances. Adjustments accelerated the schedule for phase-out. Decisions allow continued use of some ODSs for time-limited periods for applications essential or critical, such as medicine or national security.

  4. Methyl bromide (CH3Br) and nitrous oxide (N2O) are potent ozone-depleting GHGs that originate from both natural sources and human activities.

  5. The latest estimates of GWP are from the 2013 Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). GWP is typically expressed for a 100-year time horizon (GWP100-year), but GHGs with atmospheric lifetime longer than 100 years continue to exert a climate forcing for up to 10,000 years (for example, Perfluorocarbons—PFCs).

References

  • Andersen SO, Sarma KM (2002) Protecting the ozone layer: the United Nations history. Earthscan Press, London (Official publication of the United Nations Environment Programme)

    Google Scholar 

  • Andersen SO, Halberstadt ML and Borgford-Parnell N. Stratospheric ozone, global warming, and the principle of unintended consequences—an ongoing science and policy success story. Journal of the Air & Waste Management Association (AWMA), critical review, published online 22 May 2013. 10.1080/10962247.2013.791349 EISSN: 2162-2906 ISSN: 1096-2247

  • Bates DR, Nicolet M (1950) The photochemistry of atmospheric water vapor. J Geophys Res 55(3):301–327. doi:10.1029/JZ055i003p00301

    Article  CAS  Google Scholar 

  • Bond TC et al (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res Atmosph 118(11):5380–5552. doi:10.1002/jgrd.50171

    Article  CAS  Google Scholar 

  • Bowerman NHA, Frame DJ, Huntingford C, Lowe JA, Smith SM, Allen MR (2013) The role of short-lived climate pollutants in meeting temperature goals. Nat Clim Chang 3(12):1021–1024. doi:10.1038/nclimate2034

    Article  CAS  Google Scholar 

  • Burney JA, Kennel CF, Victor DG (2013) Getting serious about the new realities of global climate change. Bull At Sci 69(4):49–57. doi:10.1177/0096340213493882

    Article  Google Scholar 

  • Chen, W. T., Lee, Y. H., Adams, P. J., Nenes, A., & Seinfeld, J. H. (2010) Will black carbon mitigation dampen aerosol indirect forcing? Geophysical Research Letters, 37(9). doi: http://dx.doi.org/10.1029/2010GL042886

  • Chung, S. H., & Seinfeld, J. H. (2005) Climate response of direct radiative forcing of anthropogenic black carbon. Journal of Geophysical Research-Atmospheres, 110(D11). doi: 10.1029/2004jd005441

  • Crutzen PJ (1970) The influence of nitrogen oxides on the atmospheric ozone content. Q J R Meteorol Soc 96(408):320–325. doi:10.1002/qj.49709640815

    Article  Google Scholar 

  • Farman JC, Gardiner BG, Shanklin JD (1985) Large losses of total ozone in Antarctica reveal seasonal ClO x /NO x interaction. Nature 315(6016):207–210. doi:10.1038/315207a0

    Article  CAS  Google Scholar 

  • Hu AX, Xu YY, Tebaldi C, Washington WM, Ramanathan V (2013) Mitigation of short-lived climate pollutants slows sea-level rise. Nat Clim Chang 3(8):730–734. doi:10.1038/nclimate1869

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)). Cambridge University Press, Cambridge, 1535 pp

  • IPCC/TEAP (2005) Special report: safeguarding the ozone layer and the global climate system: issues related to hydrofluorocarbons and perfluorocarbons. Cambridge University Press, Cambridge

    Google Scholar 

  • Jacobson MZ (2001) Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409(6821):695–697. doi:10.1038/35055518

    Article  CAS  Google Scholar 

  • Johnston H (1971) Reduction of stratospheric ozone by nitrogen oxide catalysts from supersonic transport exhaust. Science 173(3996):517–522. doi:10.1126/science.173.3996.517

    Article  CAS  Google Scholar 

  • Lam NL, Chen YJ, Weyant C, Venkataraman C, Sadavarte P, Johnson MA, Smith KR, Brem BT, Arineitwe J, Ellis JE, Bond TC (2012) Household light makes global heat: high black carbon emissions from kerosene wick lamps. Environ Sci Technol 46(24):13531–13538. doi:10.1021/es302697h

    Article  CAS  Google Scholar 

  • Meinshausen, M., Meinshausen, N., Hare, W., Raper, S. C. B., Frieler, K., Knutti, R., Frame, D. J., Allen, M. R. (2009) Greenhouse-gas emission targets for limiting global warming to 2°C. Nature, 458(7242), 1158-1162. doi: http://www.nature.com/nature/journal/v458/n7242/suppinfo/nature08017_S1.html

  • Molina M, Rowland FS (1974) Stratospheric sink for chlorofluoromethanes: chlorine atom catalyzed destruction of ozone. Nature 249:810–812

    Article  CAS  Google Scholar 

  • Molina M, Zaelke D, Sarma KM, Andersen SO, Ramanathan V, Kaniaru D (2009) Reducing abrupt climate change risk using the Montreal Protocol and other regulatory actions to complement cuts in CO2 emissions. Proc Natl Acad Sci U S A 106(49):20616–20621. doi:10.1073/pnas.0902568106

    Article  CAS  Google Scholar 

  • Ramanathan V, Xu YY (2010) The Copenhagen Accord for limiting global warming: criteria, constraints, and available avenues. Proc Natl Acad Sci U S A 107(18):8055–8062. doi:10.1073/pnas.1002293107

    Article  CAS  Google Scholar 

  • Seinfeld, J.H., Pandis, S.N. (2006) Atmospheric chemistry and physics—from air pollution to climate change. Wiley-Interscience, 2nd edn

  • Shindell D et al (2012) Simultaneously mitigating near-term climate change and improving human health and food security. Science 335(6065):183–189. doi:10.1126/science.1210026

    Article  CAS  Google Scholar 

  • Shoemaker JK, Schrag DP, Molina MJ, Ramanathan V (2013) What role for short-lived climate pollutants in mitigation policy? Science 342(6164):1323–1324. doi:10.1126/science.1240162

    Article  CAS  Google Scholar 

  • Smith SJ, Mizrahi A (2013) Near-term climate mitigation by short-lived forcers. Proc Natl Acad Sci U S A 110(35):14202–14206. doi:10.1073/pnas.1308470110

    Article  CAS  Google Scholar 

  • Solomon S, Garcia RR, Rowland FS, Wuebbles DJ (1986) On the depletion of Antarctic ozone. Nature 321(6072):755–758

    Article  CAS  Google Scholar 

  • Spiro TG, Purvis-Roberts K, Stigliani WM (2012) Chemistry of the environment. University Science, Herndon

    Google Scholar 

  • TEAP (2010) 2010 Assessment report of the technology and economic assessment panel. UNEP, Nairobi, Ozone Secretariat, 2011

  • Velders GJM, Andersen SO, Daniel JS, Fahey DW, McFarland M (2007) The importance of the Montreal Protocol in protecting climate. Proc Natl Acad Sci 104(12):4814–4819. doi:10.1073/pnas.0610328104

    Article  CAS  Google Scholar 

  • Velders GJM, Fahey DW, Daniel JS, McFarland M, Andersen SO (2009) The large contribution of projected HFC emissions to future climate forcing. Proc Natl Acad Sci U S A 106(27):10949–10954. doi:10.1073/pnas.0902817106

    Article  CAS  Google Scholar 

  • Velders GJM, Ravishankara AR, Miller MK, Molina MJ, Alcamo J, Daniel JS, Fahey DW, Montzka SA, Reimann S (2012) Preserving Montreal Protocol climate benefits by limiting HFCs. Science 335(6071):922–923. doi:10.1126/science.1216414

    Article  CAS  Google Scholar 

  • Velders GJM, Solomon S, Daniel JS (2014) Growth of climate change commitments from HFC banks and emissions. Atmos Chem Phys 14(9):4563–4572. doi:10.5194/acp-14-4563-2014

    Article  CAS  Google Scholar 

  • Wallack JS, Ramanathan V (2009) The other climate changers: why black carbon and ozone also matter. Foreign Affairs 88(5):105–113

    Google Scholar 

  • WMO (2014a) World Meteorological Organization Annual Greenhouse Gas Bulletin No. 10, 9 September 2014. http://www.wmo.int/pages/mediacentre/press_releases/documents/1002_GHG_Bulletin.pdf

  • WMO (2014b) Assessment for decision-makers. Scientific assessment of ozone depletion: 2014 global ozone research and monitoring project—report no. 56, Geneva, Switzerland. http://www.wmo.int/pages/prog/arep/gaw/ozone_2014/ozone_asst_report.html

  • Xu Y, Zaelke D, Velders GJM, Ramanathan V (2013) The role of HFCs in mitigating 21st century climate change. Atmos Chem Phys 13(12):6083–6089. doi:10.5194/acp-13-6083-2013

    Article  CAS  Google Scholar 

  • Zaelke D, Borgford-Parnell N (2014) Primer on hydrofluorocarbons: fast action under the Montreal Protocol can limit growth of HFCs, prevent 100 to 200 billion tonnes of CO2-equivalent emissions by 2050, and avoid up to 0.5°C of warming by 2100. Institute for governance and sustainable development: http://www.igsd.org/documents/HFCPrimer21Oct14.pdf

Download references

Acknowledgments

John H. Seinfeld, Deborah S. Gross, and Stephen O. Andersen are acknowledged for their insightful comments. Special thanks go to colleagues who participated in the plenary and the follow-up session on “The Montreal Protocol at the Crossroads” at the 2014 annual conference of the Association of Environmental Studies and Sciences (AESS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, S. Managing short-lived climate forcers in curbing climate change: an atmospheric chemistry synopsis. J Environ Stud Sci 5, 130–137 (2015). https://doi.org/10.1007/s13412-014-0207-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13412-014-0207-7

Keywords

Navigation