Skip to main content

Advertisement

Log in

Hyperglycemia and RBCs: too sweet to survive

  • Review Article
  • Published:
International Journal of Diabetes in Developing Countries Aims and scope Submit manuscript

Abstract

Sustained untreated hyperglycemia is associated with complications at molecular, cellular, and organ levels in the body that ultimately lead to comorbidities including cardiovascular-related pathologies, neuropathies, nephropathies, blindness, limb amputations, etc. Mature RBCs are unique in their structure and function; being without cellular organelles including nucleus and mitochondria, they are highly sensitive and responsive to the molecular changes in their microenvironment in general and elevated glucose in particular. They lack the ability to synthesize new proteins, replenish its enzyme-based antioxidant machinery, and replace any cellular components in the event of oxidative damage. Although they are dependent on glycolytic processing of glucose for their energy requirements, sustained exposure to hyperglycemia significantly impacts their structure as well as function and leads to early aging of the circulating RBCs with shortened lifespan. Loss of deformability due to hyperglycemia prohibits them to reversibly change their shape and squeeze through the microvasculature, a hallmark of RBC functionality for nutrient and gaseous exchanges. This mini-review of literature signifies the effect of hyperglycemia on RBCs in terms of eryptosis, lipid peroxidation in the cell membrane to compromise membrane integrity which significantly alters its deformity and coaguability, and adherence to endothelial surface leading loss of functionality and life-span.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AGEs:

Advanced glycation end products

Arg-P:

Arg-pyrimidine

CEL:

Carboxyethyllysine

CML:

Carboxymethylysine

CP450:

Cytochrome P-450

FAAD:

Fas-associated death domain

FasL:

Fas ligand

GLUT1:

Glucose transporter 1

GLUT4:

Glucose transporter 4

HSCs:

Hematopoietic stem cells

LDH:

Lactate dehydrogenase

MDA:

Malonyldialdehyde

MCV:

Mean corpuscular volume

Na+/K+-ATPase:

Na+/K+ adenosine triphosphatase (ATPase)

ROS:

Reactive oxygen species

RBCs:

Red blood cells

WHO:

World Health Organization

References

  1. World Health Organization. WHO global report on diabetes 2016. http://www.who.int/diabetes/global-report/.

  2. Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev. 2013;93:137–88.

    Article  CAS  PubMed  Google Scholar 

  3. Lee PG, Halter JB. The pathophysiology of hyperglycemia in older adults: clinical considerations. Diabetes Care. 2017;40(4):444–52. https://doi.org/10.2337/dc16-1732.

    Article  PubMed  Google Scholar 

  4. Sheetz MJ, King GL. Molecular understanding of hyperglycemia’s adverse effects for diabetic complications. JAMA. 2002;288(20):2579–88. https://doi.org/10.1001/jama.288.20.2579.

    Article  CAS  PubMed  Google Scholar 

  5. Kaneto H, Katakami N, Matsuhisa M, Matsuoka T. Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediat Inflamm. 2010;2010:453892. 11 pages

    Article  Google Scholar 

  6. Robertson RP, Harmon J, Takahasi H. Glucose toxicity in β-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes. 2003;52(3):581–7. https://doi.org/10.2337/diabetes.52.3.581.

    Article  CAS  PubMed  Google Scholar 

  7. Leney SE, Tavare JM. The molecular basis of insulin-stimulated glucose uptake: signalling, trafficking and p2otential drug targets. J Endocrinol. 2009;203(1):1–18. https://doi.org/10.1677/JOE-09-0037.

    Article  CAS  PubMed  Google Scholar 

  8. Ebeling P, Koistinen HA, Koivisto VA. Hypothesis: Insulin-independent glucose transport regulates insulin sensitivity. FEBS Lett. 1998;436(3):301–3. https://doi.org/10.1016/S0014-5793(98)01149-1.

    Article  CAS  PubMed  Google Scholar 

  9. Campos C. Chronic hyperglycemia and glucose toxicity: pathology and clinical sequelae. Postgrad Med. 2012;124(6):90–7. https://doi.org/10.3810/pgm.2012.11.2615.

    Article  PubMed  Google Scholar 

  10. Arias CF, Arias CF. How do red blood cells know when to die? R Soc Open Sci. 2017;4(4):160850. https://doi.org/10.1098/rsos.160850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Adamson JW. Regulation of red blood cell production. Am J Med. 1996;101(2):4S–6S. https://doi.org/10.1016/S0002-9343(96)00160-X.

    Article  CAS  PubMed  Google Scholar 

  12. Burrilla DR, Verneta A, Collinsa JJ, Silvera PA, Waya JC. Targeted erythropoietin selectively stimulates red blood cell expansion in vivo. PNAS. 2016;113(19):5245–50. https://doi.org/10.1073/pnas.1525388113.

    Article  CAS  Google Scholar 

  13. Pries AR, Secomb TW, Gaehtgens P. Biophysical aspects of blood flow in the microvasculature. Cardiovasc Res. 1996;32(4):654–67. https://doi.org/10.1016/S0008-6363(96)00065-X.

    Article  CAS  PubMed  Google Scholar 

  14. Kholoussi N, Helwa I, Amara F. Red blood cells surface morphology in diabetic ketoacidosis. Middle East J Appl Sci. 2012;2(1):51–7.

    Google Scholar 

  15. Jain SK. Hyperglycemia can cause membrane lipid peroxidation and osmotic fragility in human red blood cells. J Biol Chem. 1989;264(35):21340–5.

    CAS  PubMed  Google Scholar 

  16. Lutz HU, Bogdanova A. Mechanisms tagging senescent red blood cells for clearance in healthy humans. Front Physiol. 2013;4:387. Pages 1–15

    Article  PubMed  PubMed Central  Google Scholar 

  17. van Wijk R, van Solinge WW. The energy-less red blood cell is lost: erythrocyte enzyme abnormalities of glycolysis. Blood. 2005;106(13):4034–42. https://doi.org/10.1182/blood-2005-04-1622.

    Article  CAS  PubMed  Google Scholar 

  18. Valentine WN, Paglia DE. The primary cause of hemolysis in enzymopathies of anaerobic glycolysis: a viewpoint. Blood Cells. 1980;6(4):819–29.

    CAS  PubMed  Google Scholar 

  19. Mazzanti L, Faloia E, Rabini RA, Staffolani R, Kantar A, Fiorini R, et al. Diabetes mellitus induces red blood cell plasma membrane alterations possibly affecting the aging process. Clin Biochem. 1992;25(1):41–6. https://doi.org/10.1016/0009-9120(92)80044-H.

    Article  CAS  PubMed  Google Scholar 

  20. Cohen RM, Franco RS, Joiner C. Is poor glycemic control associated with reduced red blood cell lifespan? Diabetes Care. 2004;27(4):1013–4. https://doi.org/10.2337/diacare.27.4.1013.

    Article  PubMed  Google Scholar 

  21. Huang Z, Liu Y, Mao Y, Chen W, Xiao Z, Yu Y. Relationship between glycated haemoglobin concentration and erythrocyte survival in type 2 diabetes mellitus determined by a modified carbon monoxide breath test. J Breath Res. 2017; https://doi.org/10.1088/1752-7163/aa9081.

  22. Carruthers A, DeZutter J, Ganguly A, Devaskar SU. Will the original glucose transporter isoform please stand up! Am J Physiol Endocrinol Metab. 2009;297(4):E836–48. https://doi.org/10.1152/ajpendo.00496.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Montel-Hagen A, Kinet S, Manel N, et al. Erythrocyte Glut1 triggers dehydroascorbic acid uptake in mammals unable to synthesize vitamin C. Cell. 2008;132:1039–48.

    Article  CAS  PubMed  Google Scholar 

  24. Montel-Hagen A, Blanc L, Boyer-Clavel M, Jacquet C, Vidal M, Sitbon M, et al. The Glut1 and Glut4 glucose transporters are differentially expressed during perinatal and postnatal erythropoiesis. Blood. 2008;112:4729–38.

    Article  CAS  PubMed  Google Scholar 

  25. Vrhovac I, Breljak D, Sabolic I. Glucose transporters in the mammalian blood cells. Period Biol. 2014;116(2):131–8.

    Google Scholar 

  26. Zhang J-Z, Ismail-Beigi F. Activation of GLUT1 glucose transporter in human erythrocytes. Arch Biochem Biophys. 1998;365(1):86–92.

    Article  Google Scholar 

  27. Hajjawi OS. Glucose transport in human red blood cells. Am J Biomed Life Sci. 2013;1(3):44–52.

    Article  CAS  Google Scholar 

  28. Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters. Mol Asp Med. 2013;34(2-3):121–38. https://doi.org/10.1016/j.mam.2012.07.001.

    Article  CAS  Google Scholar 

  29. Hu X-J, Peng F, Zhou H-Q, Zhang Z-H, Cheng W-Y, Feng H-F. The abnormality of glucose transporter in the erythrocyte membrane of Chinese type 2 diabetic patients. Biochim Biophys Acta. 2000;1466(1-2):306–14. https://doi.org/10.1016/S0005-2736(00)00175-9.

    Article  CAS  PubMed  Google Scholar 

  30. Lang KS, Lang PA, Bauer C, Duranton C, Wieder T, Huber SM, et al. Mechanisms of suicidal erythrocyte death. Cell Physiol Biochem. 2005;15(5):195–202. https://doi.org/10.1159/000086406.

    Article  CAS  PubMed  Google Scholar 

  31. Fırat U, Kaya S, Çim A, Büyükbayram H, Gökalp O, Dal MS, et al. Increased caspase-3 immunoreactivity of erythrocytes in stz diabetic rats. Exp Diabetes Res. 2012;2012:316384. https://doi.org/10.1155/2012/316384.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mandal D, Mazumder A, Das P, Kundu M, Basu J. Fas-, caspase 8-, and caspase 3-dependent signaling regulates the activity of the aminophospholipid translocase and phosphatidylserine externalization in human erythrocytes. J Biol Chem. 2005;280(47):39460–7. https://doi.org/10.1074/jbc.M506928200.

    Article  CAS  PubMed  Google Scholar 

  33. Ghashghaeinia M, Cluitmans JCA, Akel A, Dreischer P, Toulany M, Köberle M, et al. The impact of erythrocyte age on eryptosis. Br J Haematol. 2012;157(5):606–14. https://doi.org/10.1111/j.1365-2141.2012.09100.x.

    Article  CAS  PubMed  Google Scholar 

  34. Lang E, Lang F. Triggers, inhibitors, mechanisms, and significance of eryptosis: the suicidal erythrocyte death. BioMed Res Int. 2015;2015:513518. 16 pages

    Article  PubMed  PubMed Central  Google Scholar 

  35. Awasthi S, Gayathiri SK, Ramya R, Duraichelvan R, Dhason A, Saraswathi NT. Advanced glycation-modified human serum albumin evokes alterations in membrane and eryptosis in erythrocytes. Appl Biochem Biotechnol. 2015;177(5):1013–24. https://doi.org/10.1007/s12010-015-1793-x.

    Article  CAS  PubMed  Google Scholar 

  36. Maellaro E, Leoncini S, Moretti D, BelloItalo BD, Claudio T, De Felice C, et al. Erythrocyte caspase-3 activation and oxidative imbalance in erythrocytes and in plasma of type 2 diabetic patients. Acta Diabetol. 2013;50(4):489–95. https://doi.org/10.1007/s00592-011-0274-0.

    Article  CAS  PubMed  Google Scholar 

  37. Mohandas N, Gallagher PG. Red cell membrane: past, present, and future. Blood. 2008;112(10):3939–48. https://doi.org/10.1182/blood-2008-07-161166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Himbert S, Alsop RJ, Rose M, Hertz L, Dhaliwal A, Moran-Mirabal JM, et al. The molecular structure of human red blood cell membranes from highly oriented, solid supported multi-lamellar membranes. Sci Rep. 2017;7:39661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lieberman M, Marks A, Peet A, Chansk M. Marks’ Basic Medical Biochemistry. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2012. p. 805–26.

    Google Scholar 

  40. Campanella ME, Chu H, Low PS. Assembly and regulation of a glycolytic enzyme complex on the human erythrocyte membrane. PNAS. 2005;102(7):2402–7. https://doi.org/10.1073/pnas.0409741102.

    Article  CAS  PubMed  Google Scholar 

  41. Ferru E, Giger K, Pantaleo A, Campanella E, Grey J, Ritchie K, et al. Regulation of membrane-cytoskeletal interactions by tyrosine phosphorylation of erythrocyte band 3. Blood. 2011;117(22):5998–6006. https://doi.org/10.1182/blood-2010-11-317024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cluitmans J, Gevi F, Siciliano A, Matte A, Leal J, De Franceschi L, et al. Red blood cell homeostasis: pharmacological interventions to explore biochemical, morphological and mechanical properties. Front Mol Biosci. 2016;3:10. https://doi.org/10.3389/fmolb.2016.00010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dzik WH. The air we breathe: three vital respiratory gases and the red blood cell: oxygen, nitric oxide, and carbon dioxide. Transfusion. 2011;51(4):676–85. https://doi.org/10.1111/j.1537-2995.2011.03114.x.

    Article  CAS  PubMed  Google Scholar 

  44. Morse EE, Kalache G, Wermino FG, Stockwell R. Increased electronic mean corpuscular volume induced by marked hyperglycemia. Ann Clin Lab Sci. 1981;11(2):184–7.

    CAS  PubMed  Google Scholar 

  45. Nagai R, Deemer EK, Brock JW, Thorpe SR, Baynes JW. Effect of glucose concentration on formation of AGEs in erythrocytes in vitro. Ann New York Acad Sci. 2005;1043(1):146–50. https://doi.org/10.1196/annals.1333.018.

    Article  CAS  Google Scholar 

  46. Reshamwala S, Patil N. Biochemical changes in erythrocyte membrane in uncontrolled type 2 diabetes mellitus. Indian J Biochem Biophys. 2005;42(4):250–3.

    CAS  PubMed  Google Scholar 

  47. Jameson J, Fauci A, Kasper D, Hauser S, Longo D, Jameson J, et al. Harrison’s principles of internal medicine. 19th ed. New York: McGraw-Hill, Medical Publishers; 2015. p. 2423–30.

    Google Scholar 

  48. Jain SK, McVie R, Duett J, Herbst JJ. Erythrocyte membrane lipid peroxidation and glycosylated hemoglobin in diabetes. Diabetes. 1989;38(12):1539–43. https://doi.org/10.2337/diab.38.12.1539.

    Article  CAS  PubMed  Google Scholar 

  49. Pani LN, Korenda L, Meigs JB, Driver C, Chamany S, Fox CS, et al. Effect of aging on A1C levels in individuals without diabetes. Evidence from the Framingham Offspring Study and the National Health and Nutrition Examination Survey 2001–2004. Diabetes Care. 2008;31(10):1991–6. https://doi.org/10.2337/dc08-0577.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jain SK, Levinea SN, Duetta J, Hollie B. Elevated lipid peroxidation levels in red blood cells of streptozotocin-treated diabetic rats. Metabolism. 1990;39(9):971–5. https://doi.org/10.1016/0026-0495(90)90310-9.

    Article  CAS  PubMed  Google Scholar 

  51. Viskupicova J, Blaskovic D, Galiniak S, Soszyński M, Bartosz G, Horakova L, et al. Effect of high glucose concentrations on human erythrocytes in vitro. Redox Biol. 2015;5:381–7. https://doi.org/10.1016/j.redox.2015.06.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dianzani M, Barrera G. Pathology and physiology of lipid peroxidation and its carbonyl products. In: Álvarez S, Evelson P, editors. Free Radical Pathophysiology. Kerala: Transworld Research Network; 2008. p. 19–38. ISBN: 978-81-7895-311-3.

    Google Scholar 

  53. Blisard KS, Mieyal JJ. Characterization of the aniline hydroxylase activity of erythrocytes. J Biol Chem. 1979;254:5104–10.

    CAS  PubMed  Google Scholar 

  54. Starke DW, Blisard KS, Mieyal JJ. Substrate specificity of the monooxygenase activity of hemoglobin. Mol Pharrnacol. 1984;25:467–75.

    CAS  Google Scholar 

  55. Edwards CJ, Fuller J. Oxidative stress in erythrocytes. Comp Haematol Int. 1996;6(1):24–31. https://doi.org/10.1007/BF00368098.

    Article  CAS  Google Scholar 

  56. Mohanty JG, Nagababu E, Rifkind JM. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Front Physiol. 2014;5:84.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pandey KB, Rizvi SI. Biomarkers of oxidative stress in red blood cells. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2011;155(2):131–6. https://doi.org/10.5507/bp.2011.027.

    Article  CAS  PubMed  Google Scholar 

  58. Varashree BS, Bhat GP. Correlation of lipid peroxidation with glycated hemoglobin levels in diabetes mellitus. Online J Health Allied Sci. 2011;10(2):11.

    Google Scholar 

  59. Jain SK, Mohandas N, Clark M, Shohet SB. The effect of malonyldialdehyde, a product of lipid peroxidation, on the deformability, dehydration, and 51-Cr-survival of erythrocytes. Br J Haematol. 1983;53(2):247–55. https://doi.org/10.1111/j.1365-2141.1983.tb02018.x.

    Article  CAS  PubMed  Google Scholar 

  60. Rodrigo R, Bächler JP, Araya J, Prat H, Passalacqua W. Relationship between (Na+K)-ATPase activity, lipid peroxidation and fatty acid profile in erythrocytes of hypertensive and normotensive subjects. Mol Cell Biochem. 2007;303(1-2):73–81. https://doi.org/10.1007/s11010-007-9457-y.

    Article  CAS  PubMed  Google Scholar 

  61. Cazzola R, Rondanelli M, Russo-Volpe S, Ferrari E, Cestaro B. Decreased membrane fluidity and altered susceptibility to peroxidation and lipid composition in overweight and obese female erythrocytes. J Lipid Res. 2004;45(10):1846–51. https://doi.org/10.1194/jlr.M300509-JLR200.

    Article  CAS  PubMed  Google Scholar 

  62. Bravi MC, Armiento A, Laurenti O, Cassone-Faldetta M, De Luca O, Moretti A, et al. Insulin decreases intracellular oxidative stress in patients with type 2 diabetes mellitus. Metabolism. 2006;55(5):691–5. https://doi.org/10.1016/j.metabol.2006.01.003.

    Article  CAS  PubMed  Google Scholar 

  63. Sompong W, Cheng H, Adisakwattana S. Protective effects of ferulic acid on high glucose-induced protein glycation, lipid peroxidation, and membrane ion pump activity in human erythrocytes. PLoS One. 2015;10(6):e0129495. https://doi.org/10.1371/journal.pone.0129495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Iannello S, Milazzo P, Belfiore F. Animal and human tissue Na, K-ATPase in obesity and diabetes: a new proposed enzyme regulation. Am J Med Sci. 2007;333:1–9.

    Article  PubMed  Google Scholar 

  65. Srivatsan R, Das S, Gadde R, Manoj-Kumar K, Taduri S, Rao N. Antioxidants and lipid peroxidation status in diabetic patients with and without complications. Arch Iran Med. 2009;12:121–7.

    CAS  PubMed  Google Scholar 

  66. Nans A, Mohandas N, Stokes DL. Native ultrastructure of the red cell cytoskeleton by cryo-electron tomography. Biophys J. 2011;101(10):2341–50. https://doi.org/10.1016/j.bpj.2011.09.050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Li J, Lykotrafit G, Dao M, Suresh S. Cytoskeletal dynamics of human erythrocyte. PNAS. 2007;104(12):4937–42. https://doi.org/10.1073/pnas.0700257104.

    Article  CAS  PubMed  Google Scholar 

  68. Simmons D. Increased red cell count in diabetes and pre-diabetes. Diabetes Res Clin Pract. 2010;90(3):e50–3. https://doi.org/10.1016/j.diabres.2010.07.005.

    Article  CAS  PubMed  Google Scholar 

  69. Babu N, Singh M. Influence of hyperglycemia on aggregation, deformability and shape parameters of erythrocytes. Clin Hemorheol Microcirc. 2004;31:273–80.

    CAS  PubMed  Google Scholar 

  70. van Buys A, van Rooy M-J, Soma P, Papendorp DV, Lipinski B, Pretorius E. Changes in red blood cell membrane structure in type 2 diabetes: a scanning electron and atomic force microscopy study. Cardiovasc Diabetol. 2013;12(1):25. https://doi.org/10.1186/1475-2840-12-25.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Agrawal R, Smart T, Nobre-Cardoso J, Richards C, Bhatnagar R, Tufail A, et al. Assessment of red blood cell deformability in type 2 diabetes mellitus and diabetic retinopathy by dual optical tweezers stretching technique. Sci Rep. 2016;6(1):15873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Elshennawy ATM. Effect of gestational diabetes on gross morphology, histology and histochemistry of human placenta. Endocrinol Metab Syndr. 2016;5:1.

    Google Scholar 

  73. Kamana KC, Shakya S, Zhang H. Gestational diabetes mellitus and macrosomia: a literature review. Ann Nutr Metab. 2015;66(suppl 2):14–20.

    Google Scholar 

  74. Gioia S, Cerekja A, Larciprete G, Vallone C, Demaliaj E, Evangelista MT, et al. Gestational diabetes: is it linked to platelets hyperactivity? Platelets. 2009;20(2):140–1. https://doi.org/10.1080/09537100802630062.

    Article  CAS  PubMed  Google Scholar 

  75. Min Y, Ghebremeskel K, Lowy C, Thomas B, Crawford MA. Adverse effect of obesity on red cell membrane arachidonic and docosahexaenoic acids in gestational diabetes. Diabetologia. 2004;47(1):75–81. https://doi.org/10.1007/s00125-003-1275-5.

    Article  CAS  PubMed  Google Scholar 

  76. Min Y, Nam J-H, Ghebremeskel K, Kim A, Crawford M. A distinctive fatty acid profile in circulating lipids of Korean gestational diabetics: a pilot study. Diabetes Res Clin Pract. 2006;73(2):178–83. https://doi.org/10.1016/j.diabres.2006.01.003.

    Article  CAS  PubMed  Google Scholar 

  77. Taschereau-Charron A, Da Silva MS, Bilodeau J-F, Morisset A-S, Julien P, Rudkowska I. Alterations of fatty acid profiles in gestational diabetes and influence of the diet. Maturitas. 2017;99:98–104. https://doi.org/10.1016/j.maturitas.2017.01.014.

    Article  CAS  PubMed  Google Scholar 

  78. Moretti N, Rabini RA, Nanetti L, Grechi G, Curzi MC, Cester N, et al. Sialic acid content in erythrocyte membranes from pregnant women affected by gestational diabetes. Metabolism. 2002;51(5):605–8. https://doi.org/10.1053/meta.2002.32015.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank SRC for supporting this student research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khawaja Husnain Haider.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamoun Rajab, A., Haider, K.H. Hyperglycemia and RBCs: too sweet to survive. Int J Diabetes Dev Ctries 38, 357–365 (2018). https://doi.org/10.1007/s13410-018-0613-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13410-018-0613-6

Keywords

Navigation