QM study of interaction between arginine amino acid and Au clusters and the effects on arginine acidity


Understanding the various structures of gold clusters and the interaction modes between Au clusters and biomolecules is an important issue in material science such as biosensors and catalysts. The binding of small gold clusters (Aun n = 2–5) with neutral and anionic forms of arginine (Arg) amino acid is investigated in this study using density functional theory (DFT) and B3LYP level. The relative stability among different forms of Au clusters including linear, zigzag, planar, and three-dimensional Au clusters was estimated, initially. The calculated findings show that the zigzag structure for Au3 and the planar structure for Au4 and Au5 are the best form. Furthermore, the different modes of interaction were taken into account from thermodynamic view point between the most stable conformers of Arg and Arg with gold clusters. Finally, the arginine is considered as a weak organic acid to investigate the impact of Au clusters on the gas phase acidity. The acidity of isolated arginine and the acidity of [Aun/Arg] complexes were also compared. Based on the obtained results, upon the complexation with Au clusters at 298 K, for the interaction of Au, Au2, Au3, Au4, and Au5 clusters with arginine, the gas phase acidity (GPA) of arginine alters from 342.12 to 314.17, 303.04, 299.42, 303.41, and 331.66 kcal/mol respectively. These calculated values predict that when a weak organic acid is complexed with Au clusters, it will be altered to super acid. Furthermore, for isolated and complexed species of Arg, pKa values were evaluated in water solvent.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Pyykkö P (2004) Theoretical chemistry of gold. Angew Chem 43:4412

    Article  CAS  Google Scholar 

  2. 2.

    Alvarez BRA, Flores-Lopez NS, Calderón-Ayala G, Britto Hurtado R, Cortez-Valadez M, Flores-Acosta M (2019) First-principles calculations of gold and silver clusters doped with lithium atoms. J. Physica E Low Dimens Syst Nanostruct 109:78–83

    Article  CAS  Google Scholar 

  3. 3.

    Yang Y, Chen S (2003) Surface manipulation of the electronic energy of sub nanometer-sized gold clusters: an electrochemical and spectroscopic investigation. Nano Lett 3:75–79

    CAS  Article  Google Scholar 

  4. 4.

    Rajesh C, Majumder C (2019) Interaction of gold clusters with graphene and graphene layer over surface: a density functional study. J Appl Surf Sci 469:917–922

    CAS  Article  Google Scholar 

  5. 5.

    Lei Z, Wang Q (2019) Homo and heterometallic gold(I) clusters with hypercoordinated carbon. J Coord Chem Re 378:382–394

    CAS  Article  Google Scholar 

  6. 6.

    Pyykkö P (2005) Theoretical chemistry of gold II. Inorg Chem 358:4113

    Google Scholar 

  7. 7.

    Kurashige W, Kumazawa R, Yoshino S, Negishi Y (2018) Thiolate-protected gold clusters as functional materials in photocatalysts. Encyclopedia of Interfacial Chemistry 683–696

  8. 8.

    Camacho-Mendoza RL, Zárate-Hernández LA, Vásquez-Pérez JM, Cruz-Borbolla J, Alvarado-Rodríguez JG, Thangarasu P (2018) On the interaction of anisole and thioanisole derivatives with gold clusters studied by DFT. J. Comput Theor Chem 1126:54–64

    CAS  Article  Google Scholar 

  9. 9.

    Sanchez A, Abbet S, Heiz U, Schneider WD, Hakkinen H, Barnett RN, Landman U (1999) When gold is not noble: nanoscale gold catalysts. J Phys Chem A 103:9573–9578

    CAS  Article  Google Scholar 

  10. 10.

    Hakkinen H, Landman U (2001) Gas-phase catalytic oxidation of CO by Au2. J Am Chem Soc 123:9704–9705

    CAS  Article  Google Scholar 

  11. 11.

    Jabbarzadeh SaniAli M, Pakiari H (2018) Relativistic and nonrelativistic structures, stabilities and electronic properties of small neutral gold clusters. J Comput Theor Chem 1136–1137:18–28

  12. 12.

    Bond GC, Louis C, Thompson DT (2006) Catalysis by gold. Imperical college Press, London, 6

  13. 13.

    Schwerdtfeger P, Lien M (2009) Theoretical Chemistry of Gold– From Atoms to Molecules, Clusters, Surfaces and the Solid State. In: Mohr F (ed) Gold chemistry: current trends and future directions in the life sciences, 1st edn. Wiley, New York, p 183

    Google Scholar 

  14. 14.

    Pyykkö P (1997) Strong closed-Shell interactions in inorganic chemistry. Chem Rev (Washington, DC) 97:597

    Article  Google Scholar 

  15. 15.

    Morris SM Jr (2007) Arginine metabolism: boundaries of our knowledge. Nutr 137:1602S–1609S

    CAS  Article  Google Scholar 

  16. 16.

    Javan MJ, Jamshidi Z, Tehrania ZA, Fattahi A (2012) Interactions of coinage metal clusters with histidine and their effects on histidine acidity; theoretical investigation. J Org Biomol Chem 10:9373–9382

    CAS  Article  Google Scholar 

  17. 17.

    Morris SM Jr (2012) Arginases and arginine deficiency syndromes. Curr Opin Clin Nutr Metab Care 15:64–70

    CAS  Article  Google Scholar 

  18. 18.

    Vissers YL, Dejong CH, Luiking YC, Fearon KC, von Meyenfeldt MF, Deutz NE (2005) Plasma arginine concentrations are reduced in cancer patients: evidence for arginine deficiency? Am J Clin Nutr 81:1142–1146

    CAS  Article  Google Scholar 

  19. 19.

    He L, So VLL, Xin JH (2014) A new rhodamine-thiourea/Al3+ complex sensor for the fast visual detection of arginine in aqueous media. Sensors Actuators B Chem 192:496–502

    CAS  Article  Google Scholar 

  20. 20.

    Ting L, Li N, Jiang XD, Ying Z, Yu ZF, Shu ML, Hong QL, Nian BL (2017) A colorimetric and fluorometric dual-signal sensor for arginine detection by inhibiting the growth of gold nanoparticles/carbon quantum dots composite. Biosens Bioelectron 87:772–778

    Article  CAS  Google Scholar 

  21. 21.

    Gopalakrishnan V, Burton PJ, Blaschke TF (1996) High-performance liquid chromatographic assay for the quantitation of l-arginine in human plasma. Anal Chem 68:3520–3523

    CAS  Article  Google Scholar 

  22. 22.

    Williams J, Lang D, Smith JA, Lewis MJ (1993) Plasma l-arginine levels in a rabbit model of hypercholesterolaemia. Biochem Pharmacol 46:2097–2099

    CAS  Article  Google Scholar 

  23. 23.

    Olson DL, Lacey ME, Webb AG, Sweedler JV (1999) Sweedler, nanoliter-volume NMR detection using periodic stopped-flow capillary electrophoresis. Anal Chem 71:3070–3076

    CAS  Article  Google Scholar 

  24. 24.

    Wang W, Rusin O, Xu X, Kim KK, Escobedo JO, Fakayode SO, Fletcher KA, Lowry M, Schowalter CM, Lawrence CM, Fronczek FR, Warner IM, Strongin RM (2005) Detection of homocysteine and cysteine. Am Chem Soc 127:15949–15958

    CAS  Article  Google Scholar 

  25. 25.

    Alivisatos AP, Johnsson KP, Peng X, Wilson TE, Loweth CJ, Bruchez MP, Schultz PG (1996) Organization of 'nanocrystal molecules' using DNA. Nat 382:609–611

    CAS  Article  Google Scholar 

  26. 26.

    Parak WJ, Gerion D, Pellegrino T, Zanchet D, Micheel C, Williams SC, Boudreau R, Gros MAL, Larabell CA, Alivisatos AP (2003) Biological applications of colloidal nanocrystals. Nanotechnol 14:829–938

    Article  Google Scholar 

  27. 27.

    Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Sci 277:1078–1080

    CAS  Article  Google Scholar 

  28. 28.

    Cao YWC, Jin RC, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Sci 297:1536–1540

    CAS  Article  Google Scholar 

  29. 29.

    Park HY, Schadt MJ, Wang LY, Lim IIS, Njoki PN, Kim SH, Jang MY, Luo J, Zhong CJ (2007) Fabrication of magnetic core@shell Fe oxide@Au nanoparticles for interfacial bioactivity and bio-separation. Langmuir 23:9050–9056

    CAS  Article  Google Scholar 

  30. 30.

    Ni J, Lipert RJ, Dawson GB, Porte MD (1999) Immunoassay readout method using extrinsic Raman labels adsorbed on immunogold colloids. Anal Chem 71:4903–4908

    CAS  Article  Google Scholar 

  31. 31.

    Grubisha DS, Lipert RJ, Park HY, Driskell J, Porter MD (2003) Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels. Anal Chem 75:5936–5943

    CAS  Article  Google Scholar 

  32. 32.

    Ghosh P, Han G, Erdogan B, Rosado O, Krovi SA, Rotello VM (2007) Nanoparticles featuring amino acid-functionalized side chains as DNA receptors. Chem Biol Drug Des 70:13–18

    CAS  Article  Google Scholar 

  33. 33.

    Zhong Z, Patskovskyy S, Bouvrette P, Luong JHT, Gedanken A (2004) The surface chemistry of Au colloids and their interactions with functional amino acids. J Phys Chem B 108:4046–4052

    CAS  Article  Google Scholar 

  34. 34.

    Pakiari AH, Jamshidi Z (2007) Interaction of amino acids with gold and silver clusters. J Phys Chem A 111:4391–4396

    CAS  Article  Google Scholar 

  35. 35.

    Pyykkö P (2007) Structural properties: magic nanoclusters of gold. Nat Nanotechnol 2:273–274

    Article  CAS  Google Scholar 

  36. 36.

    Knickelbein MB (1999) Reactions of transition metal clusters with small molecules. Annu Rev Physiol 50:79–115

    CAS  Article  Google Scholar 

  37. 37.

    Kshirsagar A, Ghebriel HW (2007) Adsorption of molecular hydrogen and hydrogen sulfide on Au clusters. J Chem Phys 126:244705–244714 (c) Fuchs H, Krüger D, Rousseau R, Marx D, Parrinello M (2001) Interaction of short-chain alkane thiols and thiolates with small gold clusters: adsorption structures and energetic. J Chem Phys 115:4776–4786

    Google Scholar 

  38. 38.

    Lim IIS, Ip W, Crew E, Njoki PN, Mott D, Zhong CJ, Pan Y, Zhou S (2007) Homocysteine-mediated reactivity and assembly of gold nanoparticles. Langmuir 23:826–833

    CAS  Article  Google Scholar 

  39. 39.

    Carey FA, Sundberg RJ (2000) Advanced organic chemistry, 4th edn. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  40. 40.

    Anslyn EV, Dougherty DA (2006) Modern physical organic chemistry. University Science Books, Sausalito

    Google Scholar 

  41. 41.

    Bell RP (1973) Proton in Chemistry. Chapman and Hall, London

    Google Scholar 

  42. 42.

    Albert A, Serjeant EP (1984) The determination of ionization constants. Chapman and Hall, New York

    Google Scholar 

  43. 43.

    Pliego JR Jr, Riveros JM (2002) Theoretical calculation of pKa using the cluster−continuum model. J Phys Chem A 106:7434–7439

    CAS  Article  Google Scholar 

  44. 44.

    Magill AM, Cavell KJ, Yates BF (2004) Basicity of nucleophilic carbenes in aqueous and nonaqueous solvents-theoretical predictions. J Am Chem Soc 126:8717–8724

    CAS  Article  Google Scholar 

  45. 45.

    Jorgensen WL, Briggs JM, Gao J (1987) A priori calculations of pKa's for organic compounds in water. The pKa of Ethane. J Am Chem Soc 109:6857–6858

    CAS  Article  Google Scholar 

  46. 46.

    Becke AD (1993) Density-functional thermochemistry. III The role of exact exchange. J Chem Phys 98:5648–5652

    CAS  Article  Google Scholar 

  47. 47.

    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    CAS  Article  Google Scholar 

  48. 48.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr., Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin JA, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision B.4, Gaussian, Inc., Pittsburgh PA

  49. 49.

    Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys Chem 82:270

    CAS  Article  Google Scholar 

  50. 50.

    Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys Chem 82:284–283

    Article  Google Scholar 

  51. 51.

    Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys Chem 82:299–310

    CAS  Article  Google Scholar 

  52. 52.

    Koelling DD, Harmon BN (1977) A technique for relativistic spin-polarised calculations. J Phys C Solid State Phys 10:3107–3114

    CAS  Article  Google Scholar 

  53. 53.

    Tomasi J, Persico M (1994) Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem Rev 94:2027–2094

    CAS  Article  Google Scholar 

  54. 54.

    Ding F, Smith MJ, Wang H (2009) First-principles calculation of pKa values for organic acids in nonaqueous solution. J Organomet Chem 74:2679–2691

    CAS  Article  Google Scholar 

  55. 55.

    Wang L, Ge Q (2002) Studies of rhodium nanoparticles using the first principles density functional theory calculations. J Chem Phys Lett:366–368

  56. 56.

    Zhang W, Ge Q, Wang L (2003) Structure effects on the energetic, electronic, and magnetic properties of palladium nanoparticles. J Chem Phys 118:5793–5801

    CAS  Article  Google Scholar 

  57. 57.

    Zhang W, Zhao H, Wang L (2004) The simple cubic structure of ruthenium clusters. J Phys Chem B 108:2140–2147

    CAS  Article  Google Scholar 

  58. 58.

    Zhang W, Xiao L, Hirata Y, Pawluk T, Wang L (2004) The simple cubic structure of Ir clusters and the element effect on cluster structures. J Chem Phys Lett 383:67–71

    CAS  Article  Google Scholar 

  59. 59.

    Pawluk T, Hirata Y, Wang L (2005) Studies of iridium nanoparticles using density functional theory calculations. J Phys Chem B 109:20817–20823

    CAS  Article  Google Scholar 

  60. 60.

    Xiao L, Wang L (2004) Structures of platinum clusters: planar or spherical? J Phys Chem A 108:8605–8614

    CAS  Article  Google Scholar 

  61. 61.

    Ge Q, Song C, Wang L (2006) A density functional theory study of CO adsorption on Pt-Au nanoparticles. Comput Mater Sci 35:247–253

    CAS  Article  Google Scholar 

  62. 62.

    Song C, Ge Q, Wang L (2005) DFT studies of Pt/Au bimetallic clusters and their interactions with the CO molecule. J Phys Chem B 109:22341–22350

    CAS  Article  Google Scholar 

  63. 63.

    Zhang W, Ran X, Zhao H, Wang L (2004) The nonmetallicity of molybdenum clusters. J Chem Phys 121:7717

    CAS  Article  Google Scholar 

  64. 64.

    Xiao L, Tollberg B, Hu X, Wang L (2006) Structural study of gold clusters. J Chem Phys 124:114309

    Article  CAS  Google Scholar 

  65. 65.

    Simard B, Hackett PA (1990) High resolution study of the (0, 0) and (1, 1) bands of the A0u+-X0g+. J Mol Spectrosc 142:310–318

    CAS  Article  Google Scholar 

  66. 66.

    Walker AV (2005) Structure and energetics of small gold nanoclusters and their positive ions. J Chem Phys 122:094310

    CAS  Article  Google Scholar 

  67. 67.

    Howard JA, Sutcliffe R, Mile B (1983) E.s.r. spectrum of matrix isolated Au3. J Chem Soc Chem Commun 1449–1450

  68. 68.

    Gronbeck H, Andreoni W (2000) Gold and platinum microclusters and their anions: comparison of structural and electronic properties. Chem Phys 262:1–14

    CAS  Article  Google Scholar 

  69. 69.

    Bonacic-Koutecky V, Burda J, Mitric R, Ge M, Zampella G, Fantucci P (2002) Density functional study of structural and electronic properties of bimetallic silver–gold clusters: comparison with pure gold and silver clusters. J Chem Phys 117:3120–3131

    CAS  Article  Google Scholar 

  70. 70.

    Wang J, Wang G, Zhao J (2002) Density-functional study of Aun(n=2–20) clusters: lowest-energy structures and electronic properties. Phys Rev B 66:035418

    Article  CAS  Google Scholar 

  71. 71.

    Jamshidi Z, Farhangian H, Tehrani ZA (2012) Glucose interaction with Au, Ag, and Cu clusters: theoretical investigation. Int J Quantum Chem. https://doi.org/10.1002/qua.24122

  72. 72.

    Tehrani ZA, Jamshidi Z, Javan MJ, Fattahi A (2012) Interactions of glutathione tripeptide with gold cluster: influence of intramolecular hydrogen bond on complexation behavior. J Phys Chem A 116:4338–4347

    Article  CAS  Google Scholar 

  73. 73.

    Xie HJ, Lei QF, Fang WJ (2012) Intermolecular interactions between gold clusters and selected amino acids cysteine and glycine: a DFT study. J Mol Model 2:645–652

    Article  CAS  Google Scholar 

  74. 74.

    Rai S, Suresh kumar NV, Singh H (2012) A theoretical study on interaction of proline with gold cluster. Bull Mater Sci 35:291–295

    CAS  Article  Google Scholar 

  75. 75.

    Kryachko ES, Remacle F (2005) Complexes of DNA bases and gold clusters Au3 and Au4 involving nonconventional N-H...Au hydrogen bonding. Nano Lett 5:735–739

    CAS  Article  Google Scholar 

  76. 76.

    Kumar A, Mishra PC, Suhai S (2006) Binding of gold clusters with DNA base pairs: a density functional study of neutral and anionic GC-Aun and AT-Aun (n = 4, 8) complexes. J Phys Chem A 110:7719–7727

    CAS  Article  Google Scholar 

  77. 77.

    Kryachko ES, Remacle F (2005) Complexes of DNA bases and Watson-crick base pairs with small neutral gold clusters. J Phys Chem B 109:22746–22757

    CAS  Article  Google Scholar 

  78. 78.

    Wang XB, Nicholas JB, Wang LSJ (2000) Photoelectron spectroscopy and theoretical calculations of SO4 and HSO4: confirmation of high electron affinities of SO4 and HSO4. J Phys Chem A 104:504–508

    CAS  Article  Google Scholar 

  79. 79.

    Kraychko ES (2008) Where gold meets a hydrogen bond? J Mol Struct 880:23–30

    Article  CAS  Google Scholar 

Download references


The authors gratefully acknowledge financial support from the research council of Alzahra University. Technical support of the Chemistry Computation Center at Shahid Beheshti University is greatly acknowledged.


This study received financial support from the research council of Alzahra University.

Author information



Corresponding author

Correspondence to Mina Ghiasi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information


(DOCX 1572 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghiasi, M., Bavafa, S. & Zahedi, M. QM study of interaction between arginine amino acid and Au clusters and the effects on arginine acidity. Gold Bull (2021). https://doi.org/10.1007/s13404-021-00292-7

Download citation


  • Au clusters
  • Arginine
  • DFT calculations
  • GPA