Gold Bulletin

, Volume 51, Issue 1–2, pp 27–33 | Cite as

Au monolayer film coating with graphene oxide for surface enhanced Raman effect

  • Qiang Ma
  • Xianpei RenEmail author
  • Liuqing Pang
  • Min Zhu
  • Yuzhen Zhao
  • Siyi Ding
  • Shaopeng Tian
  • Huaping Ren
  • Zongcheng Miao
Original Paper


A self-terminated electrochemical atomic layer deposition process is developed to fabricate Au monolayer (ML) film layer-by-layer. It is found that the under potential deposited hydrogen (Hupd) provides perfect termination after each ML deposition and the further ML growth can be replicated after a surface activation using a positive potential to remove the Hupd layer. Voltammetric measurements, deposition current analysis, and EQCM show clear characteristics of UPD hydrogen surface termination and the ML deposition. Both XRR and HREED confirm the Au ML film formation. Moreover, the Au ML film appears to be effective for surface enhanced Raman effect of GO on the Au ML film.


Au monolayer Atomic layer deposition EQCM X-ray reflectivity Electrodeposition Au SERS 


Funding information

This study was supported by the National Natural Science Foundation of China (51673157, 21706218), the National Natural Science Foundation of Shaanxi (2017JQ2013), the Scientific Research Foundation of Education Department of Shaanxi Provincial Government, China (17JK1164), High-level Talent Research Fund of Xijing University (XJ17T01), and Scientific Research Project of Sichuan University of Science and Engineering (2017RCL70).


  1. 1.
    Kale MJ, Avanesian T, Christopher P (2014) Direct photocatalysis by plasmonic nanostructures. ACS Catal 4:116–128. CrossRefGoogle Scholar
  2. 2.
    Huang L, Rudolph M, Rominger F, Hashmi ASK (2016) Photosensitizer-free visible-light-mediated gold-catalyzed 1, 2-difunctionalization of alkynes. Angew Chem Int Ed 55:4808–4813. CrossRefGoogle Scholar
  3. 3.
    Witzel S, Xie J, Rudolph M, Hashmi ASK (2017) Photosensitizer-free, gold-catalyzed C–C cross-coupling of boronic acids and diazonium salts enabled by visible light. Adv Synth Catal 359:1522–1528. CrossRefGoogle Scholar
  4. 4.
    Xie J, Zhang T, Chen F, Mehrkens N, Rominger F, Rudolph M, Hashmi ASK (2016) Gold-catalyzed highly selective photoredox C(sp2)-H difluoroalkylation and perfluoroalkylation of hydrazones. Angew Chem Int Ed 55:2934–2938. CrossRefGoogle Scholar
  5. 5.
    Haruta M, Yamada N, Kobayashi T, Iijima S (1989) Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J Catal 115:301–309. CrossRefGoogle Scholar
  6. 6.
    Saavedra J, Doan HA, Pursell CJ, Grabow LC, Chandler BD (2014) The critical role of water at the gold-titania interface in catalytic CO oxidation. Science 345:1599–1602. CrossRefGoogle Scholar
  7. 7.
    Mao K, Li L, Zhang W, Pei Y, Zeng XC, Wu X, Yang J (2014) A theoretical study of single-atom catalysis of CO oxidation using Au embedded 2D h-BN monolayer: a CO-promoted O2 activation. Sci Rep 4(5441).
  8. 8.
    Zhang H, Watanabe T, Okumura M, Haruta M, Toshima N (2012) Catalytically highly active top gold atom on palladium nanocluster. Nat Mater 11:49–52. CrossRefGoogle Scholar
  9. 9.
    Hughes MD, Xu Y-J, Jenkins P, McMorn P, Landon P, Enache DI, Carley AF, Attard GA, Hutchings GJ, King F, Stitt EH, Johnston P, Griffin K, Kiely CJ (2005) Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature 437:1132–1135. CrossRefGoogle Scholar
  10. 10.
    Hashmi ASK, Hutchings GJ (2006) Gold catalysis. Angew Chem Int Ed 45:7896–7936. CrossRefGoogle Scholar
  11. 11.
    Banerjee A, Su T, Beglau D, Pietka G, Liu F, Almutawalli S, Yang J, Guha S (2012) High-efficiency, multijunction nc-Si:H-based solar cells at high deposition rate. IEEE J Photovolt 2:99–103. CrossRefGoogle Scholar
  12. 12.
    Dong H, Zhang J, Ju H, Lu H, Wang S, Jin S, Hao K, Du H, Zhang X (2012) Highly sensitive multiple microRNA detection based on fluorescence quenching of graphene oxide and isothermal strand-displacement polymerase reaction. Anal Chem 84:4587–4593. CrossRefGoogle Scholar
  13. 13.
    Liu Y, Yu D, Zeng C, Miao Z, Dai L (2010) Biocompatible graphene oxide-based glucose biosensors. Langmuir 26:6158–6160. CrossRefGoogle Scholar
  14. 14.
    Yu D, Park K, Durstock M, Dai L (2011) Fullerene-grafted graphene for efficient bulk heterojunction polymer photovoltaic devices. J Phys Chem Lett 2:1113–1118. CrossRefGoogle Scholar
  15. 15.
    Tassin P, Koschny T, Soukoulis CM (2013) Graphene for terahertz applications. Science 341:620–621. CrossRefGoogle Scholar
  16. 16.
    Qu L, Liu Y, Baek JB, Dai L (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4:1321–1326. CrossRefGoogle Scholar
  17. 17.
    Yu D, Dai L (2010) Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J Phys Chem Lett 1:467–470. CrossRefGoogle Scholar
  18. 18.
    Geim AK, Grigorieva IV (2013) Van der Waals heterostructures. Nature 499:419–425. CrossRefGoogle Scholar
  19. 19.
    Xie X, Qu L, Zhou C, Li Y, Zhu J, Bai H, Shi G, Dai L (2010) An asymmetrically surface-modified graphene film electrochemical actuator. ACS Nano 4:6050–6054. CrossRefGoogle Scholar
  20. 20.
    Sau TK, Murphy CJ (2004) Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc 126:8648–8649. CrossRefGoogle Scholar
  21. 21.
    Ruemmele JA, Hall WP, Ruvuna LK, Duyne RPV (2013) A localized surface plasmon resonance imaging instrument for multiplexed biosensing. Anal Chem 85:4560–4566. CrossRefGoogle Scholar
  22. 22.
    Zhang Z, Zhang L, Hedhili MN, Zhang H, Wang P (2013) Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Lett 13:14–20. CrossRefGoogle Scholar
  23. 23.
    Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346. CrossRefGoogle Scholar
  24. 24.
    Jasuja K, Vikas B (2009) Implantation and growth of dendritic gold nanostructures on graphene derivatives: electrical property tailoring and Raman enhancement. ACS Nano 3:2358–2366. CrossRefGoogle Scholar
  25. 25.
    Kim F, Song JH, Yang P (2002) Photochemical synthesis of gold nanorods. J Am Chem Soc 124:14316–14317. CrossRefGoogle Scholar
  26. 26.
    Zhao Y, Chen G, Du Y, Xu J, Wu S, Qu Y, Zhu Y (2014) Plasmonic-enhanced Raman scattering of graphene on growth substrates and its application in SERS. Nano 6:13754–13760. Google Scholar
  27. 27.
    Zhou X, Liu H, Yang L, Liu J (2013) SERS and OWGS detection of dynamic trapping molecular TNT based on a functional self-assembly Au monolayer film. Analyst 138:1858–1864. CrossRefGoogle Scholar
  28. 28.
    Zhou X, Zhou F, Liu H, Yang L, Liu J (2013) Assembly of polymer–gold nanostructures with high reproducibility into a monolayer film SERS substrate with 5 nm gaps for pesticide trace detection. Analyst 138:5832–5838. CrossRefGoogle Scholar
  29. 29.
    George SM (2010) Atomic layer deposition: an overview. Chem Rev 110:111–131. CrossRefGoogle Scholar
  30. 30.
    Feng S, Yang J, Liu M, Zhu H, Zhang J, Li G, Peng J, Liu Q (2012) CdS quantum dots sensitized TiO2 nanorod-array-film photoelectrode on FTO substrate by electrochemical atomic layer epitaxy method. Electrochim Acta 83:321–326. CrossRefGoogle Scholar
  31. 31.
    Gregory BW, Suggs DW, Stickney JL (1991) Conditions for the deposition of CdTe by electrochemical atomic layer epitaxy. J Electrochem Soc 138:1279–1284. CrossRefGoogle Scholar
  32. 32.
    Liu Y, Gokcen D, Bertocci U, Moffat TP (2012) Self-terminating growth of platinum films by electrochemical deposition. Science 338:1327–1330. CrossRefGoogle Scholar
  33. 33.
    Slater JC (1964) Atomic radii in crystals. J Chem Phys 41:3199–3204. CrossRefGoogle Scholar
  34. 34.
    Ma Q, Zhu XJ, Zhang DD, Liu SZ (2014) Graphene oxide—a surprisingly good nucleation seed and adhesion promotion agent for one-step ZnO lithography and optoelectronic applications. J Mater Chem C 2:8956–8961. CrossRefGoogle Scholar
  35. 35.
    Losurdo M, Yi C, Suvorova A, Rubanov S, Kim T-H, Giangregorio MM, Jiao W, Bergmair I, Bruno G, Brown AS (2014) Demonstrating the capability of the high-performance plasmonic gallium–graphene couple. ACS Nano 8:3031–3041. CrossRefGoogle Scholar
  36. 36.
    Wang M, Han J, Xiong H, Guo R, Yin Y (2015) Nanostructured hybrid shells of r-GO/AuNP/m-TiO2 as highly active photocatalysts. ACS Appl Mater Interfaces 7:6909–6918. CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Qiang Ma
    • 1
  • Xianpei Ren
    • 2
    Email author
  • Liuqing Pang
    • 3
  • Min Zhu
    • 1
  • Yuzhen Zhao
    • 1
  • Siyi Ding
    • 1
  • Shaopeng Tian
    • 1
  • Huaping Ren
    • 1
  • Zongcheng Miao
    • 1
  1. 1.Lab of Organic Polymer Photovoltaic MaterialsSchool of Science, Xijing UniversityXi’anChina
  2. 2.School of Physics and Electronic EngineeringSichuan University of Science and EngineeringZigongChina
  3. 3.Institute of Electronics, Microelectronics and Nanotechnology (IEMN) UMR CNRS 8520University LilleLilleFrance

Personalised recommendations