Skip to main content
Log in

Au monolayer film coating with graphene oxide for surface enhanced Raman effect

  • Original Paper
  • Published:
Gold Bulletin Aims and scope Submit manuscript

Abstract

A self-terminated electrochemical atomic layer deposition process is developed to fabricate Au monolayer (ML) film layer-by-layer. It is found that the under potential deposited hydrogen (Hupd) provides perfect termination after each ML deposition and the further ML growth can be replicated after a surface activation using a positive potential to remove the Hupd layer. Voltammetric measurements, deposition current analysis, and EQCM show clear characteristics of UPD hydrogen surface termination and the ML deposition. Both XRR and HREED confirm the Au ML film formation. Moreover, the Au ML film appears to be effective for surface enhanced Raman effect of GO on the Au ML film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kale MJ, Avanesian T, Christopher P (2014) Direct photocatalysis by plasmonic nanostructures. ACS Catal 4:116–128. https://doi.org/10.1021/cs400993w

    Article  Google Scholar 

  2. Huang L, Rudolph M, Rominger F, Hashmi ASK (2016) Photosensitizer-free visible-light-mediated gold-catalyzed 1, 2-difunctionalization of alkynes. Angew Chem Int Ed 55:4808–4813. https://doi.org/10.1002/anie.201511487

    Article  Google Scholar 

  3. Witzel S, Xie J, Rudolph M, Hashmi ASK (2017) Photosensitizer-free, gold-catalyzed C–C cross-coupling of boronic acids and diazonium salts enabled by visible light. Adv Synth Catal 359:1522–1528. https://doi.org/10.1002/adsc.201700121

    Article  Google Scholar 

  4. Xie J, Zhang T, Chen F, Mehrkens N, Rominger F, Rudolph M, Hashmi ASK (2016) Gold-catalyzed highly selective photoredox C(sp2)-H difluoroalkylation and perfluoroalkylation of hydrazones. Angew Chem Int Ed 55:2934–2938. https://doi.org/10.1002/anie.201508622

    Article  Google Scholar 

  5. Haruta M, Yamada N, Kobayashi T, Iijima S (1989) Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J Catal 115:301–309. https://doi.org/10.1016/0021-9517(89)90034-1

    Article  Google Scholar 

  6. Saavedra J, Doan HA, Pursell CJ, Grabow LC, Chandler BD (2014) The critical role of water at the gold-titania interface in catalytic CO oxidation. Science 345:1599–1602. https://doi.org/10.1126/science.1256018

    Article  Google Scholar 

  7. Mao K, Li L, Zhang W, Pei Y, Zeng XC, Wu X, Yang J (2014) A theoretical study of single-atom catalysis of CO oxidation using Au embedded 2D h-BN monolayer: a CO-promoted O2 activation. Sci Rep 4(5441). https://doi.org/10.1038/srep05441

  8. Zhang H, Watanabe T, Okumura M, Haruta M, Toshima N (2012) Catalytically highly active top gold atom on palladium nanocluster. Nat Mater 11:49–52. https://doi.org/10.1038/nmat3143

    Article  Google Scholar 

  9. Hughes MD, Xu Y-J, Jenkins P, McMorn P, Landon P, Enache DI, Carley AF, Attard GA, Hutchings GJ, King F, Stitt EH, Johnston P, Griffin K, Kiely CJ (2005) Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature 437:1132–1135. https://doi.org/10.1038/nature04190

    Article  Google Scholar 

  10. Hashmi ASK, Hutchings GJ (2006) Gold catalysis. Angew Chem Int Ed 45:7896–7936. https://doi.org/10.1002/anie.200602454

    Article  Google Scholar 

  11. Banerjee A, Su T, Beglau D, Pietka G, Liu F, Almutawalli S, Yang J, Guha S (2012) High-efficiency, multijunction nc-Si:H-based solar cells at high deposition rate. IEEE J Photovolt 2:99–103. https://doi.org/10.1109/JPHOTOV.2011.2180892

    Article  Google Scholar 

  12. Dong H, Zhang J, Ju H, Lu H, Wang S, Jin S, Hao K, Du H, Zhang X (2012) Highly sensitive multiple microRNA detection based on fluorescence quenching of graphene oxide and isothermal strand-displacement polymerase reaction. Anal Chem 84:4587–4593. https://doi.org/10.1021/ac300721u

    Article  Google Scholar 

  13. Liu Y, Yu D, Zeng C, Miao Z, Dai L (2010) Biocompatible graphene oxide-based glucose biosensors. Langmuir 26:6158–6160. https://doi.org/10.1021/la100886x

    Article  Google Scholar 

  14. Yu D, Park K, Durstock M, Dai L (2011) Fullerene-grafted graphene for efficient bulk heterojunction polymer photovoltaic devices. J Phys Chem Lett 2:1113–1118. https://doi.org/10.1021/jz200428y

    Article  Google Scholar 

  15. Tassin P, Koschny T, Soukoulis CM (2013) Graphene for terahertz applications. Science 341:620–621. https://doi.org/10.1126/science.1242253

    Article  Google Scholar 

  16. Qu L, Liu Y, Baek JB, Dai L (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4:1321–1326. https://doi.org/10.1021/nn901850u

    Article  Google Scholar 

  17. Yu D, Dai L (2010) Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J Phys Chem Lett 1:467–470. https://doi.org/10.1021/jz9003137

    Article  Google Scholar 

  18. Geim AK, Grigorieva IV (2013) Van der Waals heterostructures. Nature 499:419–425. https://doi.org/10.1038/nature12385

    Article  Google Scholar 

  19. Xie X, Qu L, Zhou C, Li Y, Zhu J, Bai H, Shi G, Dai L (2010) An asymmetrically surface-modified graphene film electrochemical actuator. ACS Nano 4:6050–6054. https://doi.org/10.1021/nn101563x

    Article  Google Scholar 

  20. Sau TK, Murphy CJ (2004) Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc 126:8648–8649. https://doi.org/10.1021/ja047846d

    Article  Google Scholar 

  21. Ruemmele JA, Hall WP, Ruvuna LK, Duyne RPV (2013) A localized surface plasmon resonance imaging instrument for multiplexed biosensing. Anal Chem 85:4560–4566. https://doi.org/10.1021/ac400192f

    Article  Google Scholar 

  22. Zhang Z, Zhang L, Hedhili MN, Zhang H, Wang P (2013) Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Lett 13:14–20. https://doi.org/10.1021/nl3029202

    Article  Google Scholar 

  23. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346. https://doi.org/10.1021/cr030698+

    Article  Google Scholar 

  24. Jasuja K, Vikas B (2009) Implantation and growth of dendritic gold nanostructures on graphene derivatives: electrical property tailoring and Raman enhancement. ACS Nano 3:2358–2366. https://doi.org/10.1021/nn900504v

    Article  Google Scholar 

  25. Kim F, Song JH, Yang P (2002) Photochemical synthesis of gold nanorods. J Am Chem Soc 124:14316–14317. https://doi.org/10.1021/ja028110o

    Article  Google Scholar 

  26. Zhao Y, Chen G, Du Y, Xu J, Wu S, Qu Y, Zhu Y (2014) Plasmonic-enhanced Raman scattering of graphene on growth substrates and its application in SERS. Nano 6:13754–13760. https://doi.org/10.1039/C4NR04225E

    Google Scholar 

  27. Zhou X, Liu H, Yang L, Liu J (2013) SERS and OWGS detection of dynamic trapping molecular TNT based on a functional self-assembly Au monolayer film. Analyst 138:1858–1864. https://doi.org/10.1039/C3AN36683A

    Article  Google Scholar 

  28. Zhou X, Zhou F, Liu H, Yang L, Liu J (2013) Assembly of polymer–gold nanostructures with high reproducibility into a monolayer film SERS substrate with 5 nm gaps for pesticide trace detection. Analyst 138:5832–5838. https://doi.org/10.1039/C3AN00914A

    Article  Google Scholar 

  29. George SM (2010) Atomic layer deposition: an overview. Chem Rev 110:111–131. https://doi.org/10.1021/cr900056b

    Article  Google Scholar 

  30. Feng S, Yang J, Liu M, Zhu H, Zhang J, Li G, Peng J, Liu Q (2012) CdS quantum dots sensitized TiO2 nanorod-array-film photoelectrode on FTO substrate by electrochemical atomic layer epitaxy method. Electrochim Acta 83:321–326. https://doi.org/10.1016/j.electacta.2012.07.130

    Article  Google Scholar 

  31. Gregory BW, Suggs DW, Stickney JL (1991) Conditions for the deposition of CdTe by electrochemical atomic layer epitaxy. J Electrochem Soc 138:1279–1284. https://doi.org/10.1149/1.2085773

    Article  Google Scholar 

  32. Liu Y, Gokcen D, Bertocci U, Moffat TP (2012) Self-terminating growth of platinum films by electrochemical deposition. Science 338:1327–1330. https://doi.org/10.1126/science.1228925

    Article  Google Scholar 

  33. Slater JC (1964) Atomic radii in crystals. J Chem Phys 41:3199–3204. https://doi.org/10.1063/1.1725697

    Article  Google Scholar 

  34. Ma Q, Zhu XJ, Zhang DD, Liu SZ (2014) Graphene oxide—a surprisingly good nucleation seed and adhesion promotion agent for one-step ZnO lithography and optoelectronic applications. J Mater Chem C 2:8956–8961. https://doi.org/10.1039/c4c01573h

    Article  Google Scholar 

  35. Losurdo M, Yi C, Suvorova A, Rubanov S, Kim T-H, Giangregorio MM, Jiao W, Bergmair I, Bruno G, Brown AS (2014) Demonstrating the capability of the high-performance plasmonic gallium–graphene couple. ACS Nano 8:3031–3041. https://doi.org/10.1021/nn500472r

    Article  Google Scholar 

  36. Wang M, Han J, Xiong H, Guo R, Yin Y (2015) Nanostructured hybrid shells of r-GO/AuNP/m-TiO2 as highly active photocatalysts. ACS Appl Mater Interfaces 7:6909–6918. https://doi.org/10.1021/acsami.5b00663

    Article  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (51673157, 21706218), the National Natural Science Foundation of Shaanxi (2017JQ2013), the Scientific Research Foundation of Education Department of Shaanxi Provincial Government, China (17JK1164), High-level Talent Research Fund of Xijing University (XJ17T01), and Scientific Research Project of Sichuan University of Science and Engineering (2017RCL70).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianpei Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Q., Ren, X., Pang, L. et al. Au monolayer film coating with graphene oxide for surface enhanced Raman effect. Gold Bull 51, 27–33 (2018). https://doi.org/10.1007/s13404-018-0226-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13404-018-0226-3

Keywords

Navigation